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ABSTRACT

There has been much concern in recent years about the rapid increase in
automation on commercial flight decks. Part of the concern is that automation is

introduced without an explicit guiding philosophy about its usability and its

impact on overall flight crew-flight deck performance and aircraft safety. Several

surveys of commercial airline pilots have addressed flight deck automation
issues. However, most have solicited opinions specific to automation

implemented on particular aircraft. This paper describes a survey that was

aimed at gathering pilot opinions about high level, automation philosophy
issues. It was administered to 132 pilots of advanced automation aircraft. The

respondents included 46 Airbus A-320 pilots (representing Northwest, United,
and America West), 47 Boeing 747-400 pilots (representing Northwest and

United), and 39 Douglas MD-11 pilots (representing American and Delta).

The survey was composed of four major sections. The first section asked pilots to

rate different automation components that exist on the latest commercial aircraft

regarding their obtrusiveness and the attention and effort required to use them.

The second section addressed general "automation philosophy" issues, such as:

What attributes make automation "good?" What attributes make it

"trustworthy?" Has increased automation increased or decreased physical and
mental workload? The third section focused on issues related to levels and

amount of automation, such as: On the continuum from unaided pilot

performance to completely automated functions, where should flight deck

systems lie--in different situations and for different functions? What are the

advantages and disadvantages of different levels of automation? The fourth

section addressed several design issues specific to a next-generation high speed

civil transport aircraft.

The results indicate that pilots of advanced aircraft like their automation, use it,

and would welcome more. However, they also believe that automation has

disadvantages, especially fully autonomous automation. They want their

automation to be simple and reliable and to produce predictable results.

Furthermore, in response to questions about the extent to which they felt in

control of the aircraft versus controlling the automation itself, they revealed that

simple and reliable is, in some ways, related to how little attention they need to

pay to it. If there is a necessity to interact with automation extensively, such as

with systems requiring intensive data input or components that must be

constantly monitored, it is more likely to be perceived as obtrusive and pilots'
attention will be focused on the automation instead of the underlying function.

This phenomenon may be an unavoidable penalty for human-centered
automation when contrasted with autonomous systems and highlights the

importance of effective interface design.
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Although we began this survey with the objective of trying to understand the

contrast between human-centered and full automation, we come away from it
with a slightly different perspective. To be against human-centered automation

is to be against apple pie. The issues instead are to understand, from the pilots
point of view, how far they want to go in introducing automation and what

features need to be present to maintain situation awareness, to assure human

control of the integrity of flight and to promote safety and airline cost-

effectiveness. The answer provided in this survey is that the greatest promise for

further gains with the fewest disadvantages is obtained in moving from manual

systems to shared-performance systems, as contrasted with moving from shared-
performance systems to autonomous systems.

Although pilots generally indicated they would like more of all types of

automation, the biggest needs for higher levels of automation were in pre-flight;

communication, systems management, and task management functions;
planning as well as response tasks; and high workload situations. There is an

irony and a challenge in the implications of these findings. On the one hand

pilots would like new automation to be simple and reliable, but they need it to

support the most complex part of the job---managing and planning tasks,
especially in high workload situations.
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INTRODUCTION

There has been much concern in recent years about the rapid increase in

automation on commercial flight decks. The results of pilot surveys have raised

flags over such issues as increased heads down time, degradation of flying skills,

workload extremes, and the requirement to manage unanticipated situations

(e.g., McClumpha, James, Green, & Belyavin, 1991; Sarter & Woods, 1991;

Wiener, 1989). The factors underlying these findings have been explored by
researchers and industry experts (e.g., ATA, 1989; Kantowitz, & Sorkin, 1987;

Norman, 1986; Regal & Braune, 1992; Wiener & Curry, 1980). Part of the concern

is that automation has been introduced without an explicit guiding philosophy

about its usability and its impact on overall flight crew-flight deck performance

and aircraft safety. 'The fundamental concern," according to the Air Transport

Association of America, "is the lack of a scientifically-based philosophy of

automation that describes the circumstances under which tasks are appropriately
allocated to the machine and/or the pilot" (ATA, 1989). To address this need, the

ATA has created a '_/ational Plan to Enhance Aviation Safety through Human
Factors Improvements." In a similar vein, NASA has initiated an Aviation

Safety/Automation Program that has made the development of a flight deck

automation philosophy a high priority (Billings, 1991; Norman & Orlady, 1989).

The challenge in developing an automation philosophy has been well described
by Riley (1989):

In the past, automation decisions could be made by assigning to human or machine

whatever task each was better able to perform. Now, this criterion is often difficult to

apply. Furthermore, designers must consider such issues as the operator's loss of
situation awareness due to relying too heavily on automation, conflicts between the

operator's decisions and the machine's decisions, or tendencies of the operator to

override or defeat the automation due to lack of I_rust in it, p.124.

Of particular relevance to these issues is the growing literature on the cognitive

processes involved in the management of complex multi-task systems (see

Adams, Tenney, and Pew, 1994, for a review). With it, has come an appreciation
of the difficulties faced by the operator:

The distinctive characteristic of the complex semi-automated environment is that the

operator is confronted with a number of tasks at once. No matter: the operator's
behavior must still be goal directed. In order to switch in and out of tasks so as to

maintain the integrity of the system or mission as a whole, the operator must
subordinate each of the individual tasks and the overall ensemble to his or her

understanding of the goals of the system or mission as a whole. Given that the

opportunity, urgency, and particulars of completing any given task must be in
constant flux with the stream of events, this is no small requirement. (Adams,
Tenney, & Pew, 1994, p. 35).

One implication of this research is that automation should be "human-centered"

(Billings, 1991; Rouse, Geddes, & Curry, 1987; Wiener, 1989). At a minimum, it



must provide a coherent task breakdown, maintain focus on higher-level goals,
minimize distractions, and offer strong contextual support following
interruptions (Adams, Tenney, & Pew, 1994).

Another way to interpret this literature, however, is that humans, with their

propensities for error and cognitive limitations, should be taken out of the loop

altogether. Why trust any function to a human when a machine can be

programmed to do it better? These two views, the human-centered and its

opposite, the full-automation view, are two candidate design philosophies that
have been discussed in the human factors literature (Billings, 1991; Norman &

Orlady, 1989; Regal & Braune, 1992; Rouse, Geddes, & Curry, 1987).

To date, there has been little support among researchers for the full-automation

philosophy, for both technical and political reasons (Regal & Braune, 1992). The
human centered-view, by contrast, has many proponents (e.g., Billings, 1991;

Norman & Orlady, 1989; Regal & Braune, 1992; Wilson & Fadden, 1991). It is

founded on the premise that "the flight crew will be an integral component of
safe and efficient commercial flight for the foreseeable future because human

skills, knowledge, and flexibility are required in the operation of complex

systems in an unpredictable and dynamic environment" (Palmer, Rogers, Press,
LatoreUa, & Abbott, 1995). As a consequence, the crew must be kept involved in

and informed about all aspects of the flight situation that they would need to

know about if they were to fly manually and must always have the option to do

so.

Billings (1991) has described the principles of human-centered automation as
follows. The basic premise is: "rhe pilot bears the ultimate responsibility for the

safety of any flight operation" (Billings, 1991). An axiom of this premise is: "The

human operator must be in command." Corollaries to this axiom include:

To command effectively, the human operator must be involved. To be involved, the

human operator must be informed. The human operator must be able to monitor the

automated systems. Automated systems must therefore be predictable. The
automated systems must be able to monitor the human operator. Each element of the

system must have knowledge of the others' intent (Billings, 1991, p. 12).

The goal, in this view, is to create automation that supports human strengths and

compensates for human weaknesses, while leaving ultimate control in the hands
of the human (Billings, 1991; Regal & Braune, 1992). The concept of providing

different levels of automation for flight control--from highly automated control

through a flight management computer, to moderately automated control

through a mode control panel, to basically manual control through a wheel and
column and throttle--was an initial step in this direction. Today, there are many

systems, either on the flight deck or on the drawing board, that would qualify as
human-centered, in the sense of easing information processing, enhancing

situation awareness, and preventing mistakes. Examples include graphic map

displays, integrated caution and warning systems, decision aids, electronic

checklists, and electronic libraries.
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Although the human-centered approach may sound good in theory, in practice
there are many unresolved questions. How much knowledge should a pilot be
expected to have? Are there times and situations where advising the human and

waiting for a decision would be riskier than having the machine take direct

action? Is it conceivable that in the future there will be aspects of flight that are

so well understood that they can be programmed to be completely reliable and

risk-free without the need for human monitoring? These issues are not just
limited to flight decks. They are issues whenever automation is seen as

"simplifying" large complex systems. They point, once again, to the need for

careful guidelines: "A well thought-out philosophy will help designers achieve

the most effective balance between fully automated and human-centered

automation systems" (Regal & Braune, 1992).

The purpose of this study was to contribute to the development of a design

philosophy for new, advanced flight decks by gathering data on pilots' views on

automation philosophy as well as on some of the many concepts and definitions

that will be needed to formulate meaningful guidelines: for example, what it

means for automation to be trustworthy, how to define levels and types of

automation, and how to characterize good and bad automation experiences. This

information was collected by administering a survey concerned with high-level

automation issues to commercial airline pilots.

The Survey

The present survey was administered to captains and first-officers of the Boeing
747-400, Douglas MD-11, and Airbus A-320 aircraft. These aircraft were selected

because, when the survey was administered, they were the newest flight decks of

each manufacturer that had been in service long enough to have a sufficient
number of experienced respondents. The Airbus A-320 went into revenue

service in 1988, the Boeing B747-400 in 1989, and the Douglas MD-11 in 1991. An

advantage of using all three was that they provided the opportunity to compare

responses along a technological dimension. The Airbus A-320 is considered to be

the most highly automated. For example, it is a fly-by-wire aircraft and has

envelope protection features that cannot be overridden. Boeing, is perceived to

be the least automated of the three. For example, its envelope protection system

advises, but does not restrict, the pilot. Douglas, in turn, is considered to lie

somewhere in between the other two. (However, systems management on the

MD-11 is the most automated of all three aircraft.) By including pilots of all three

flight decks in the survey it was possible to look for differences in attitudes and

opinions as a function of different automation implementations on the aircraft
they fly.

Philosophy

The first issue addressed in the survey was the extent to which pilots endorsed

the human-centered, as opposed to the fully automated philosophy. While

researchers may be leaning strongly toward a human-centered philosophy, it
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was not clear to what extent the actual users and designers of the automation

shared their views. Regal & Braune (1992) have warned:

It appears that, at the present lime, many individuals and groups find it easier to work
on developing fully automated systems than dealing with the difficulties involved in
tailoring systems to the cognitive complexities of humans. We need to understand the
advantages and disadvantages of a human-centered automation approach so that it is

possible to objectively choose the optimal system design, p. 3.

A human-centeredness scale, consisting of thirteen questions, was devised by

combing the literature for statements that reflected either a human-centered or

full-automation view and then pairing each statement with an opposing

statement (see Appendix A, Q32-41 and Q46-48 and Table 1). As in previous

surveys the paired statements were presented to subjects as the endpoints of a

scale (McClumpha et al., 1991). Subjects could indicate strong agreement with

either statement by choosing a scale point close to one of the extremities, mild

agreement by choosing a point just on either side of the midpoint of the scale, or

neutrality, by choosing the midpoint itself. Table 1 identifies the endpoints for

each question as human-centered or fully-automated and references the sources

of the ideas for the questions.

Good/Trustworthy Automation

The second issue on which pilot opinions were sought concerned the attributes

that are most essential for making pilots like and trust the automation on their

flight deck. Billings (1991) has proposed a set of desirable attributes for human-
centered automation. As he pointed out, however, it may not be possible to give

equal emphasis to all the attributes. For example, an emphasis on
informativeness, by increasing the complexity of the machine, might be

incompatible with maximal dependability. For that reason, it seemed

worthwhile to solicit pilot opinions on those attributes that should receive top

priority. Therefore, two questions were composed in which subjects were asked
to rank order the ten attributes proposed by Billings and an eleventh one---

-simple"mthat appeared to the investigators to be curiously missing (see

Appendix A, questions 51 and 52). In question 51, subjects ranked the attributes

with respect to goad automation (defined as enhancing safe, economical operation

of the aircraft). In question 52 they ranked them with respect to trustworthy

automation (defined as producing pilot acceptance and faith in its operation or

output).
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Q32-41; 46-48

Quest-
ion No.

32

33

34

35

36

37

38

39

4O

41

46

47

48

Table 1

Human-Centered Philosophy Questions

Opening

Initial emphasis in
training should be
placed on learning about

! would like to see the
introduction of more
automation that

I would like to see the
introduction of more

automation that

it is likely that
situational information

about A/C systems
given by automation in
the future

It is likely that
procedural info.
concerning A/C systems
given by automation in
the future

it is likely that the pilot
in the future will

in the future

Human-Centered

Ending

the "basic airplane" before
introducing the
automation

assiststhe pilot in problem
solving

evaluates and advises the

flight crew on alternative
plans of action

will always require
confirmation

will always require
confirmation

still be responsible for
flying the

aircraft

there will still be system
failures that require
deviations from standard

procedures

Fully- Automated
Ending

the automation before

introducing the basic
airplane

automatically solves
problems

automatically executes
alternative plans of actions

can always be accepted as
fact

can always be accepted as
fact

not be responsible for
flying the
aircraft

we can expect that every
system failure will have a
prescribed procedure to
follow

The biggest obstacle to system design pilot performance
total flight safety is

less emphasisjust as much

emphasis

warn the crew of envelope
exceedence, but not

restrict pilots' control

In pilot training in the
future, principles of
navigation and aviation
are likely to receive

In most cases, an

automatic system should

Decision aids should

emphasize

Decision aids should

)rovide the flight crew
with

situation

information

Decision aids should

provide the flight crew
with

a list of alternatives

recommendations

prevent the aircraft from
exceeding its performance
envelope

response
information

one alternative

commands

Source of
Idea for

Question

Norman & Orlady,
1989, p. 184)

Morgan Herschler,
Wiener, & Salas
(1995)

Morgan, Herschler,
Wiener, & Salas
(1995)

Pew (1988)

Pew (1988)

Billings (1991, p. 12,
57, 80) Jordan (1963,

p. 162)

Regal & Braune
(1992, p.4)

Pew (1988)

Norman & Orlady
(1989)

Billings (1991, p. 29,
86)

Morgan, Herschler,
Wiener, & Salas
(1995)

Morgan, Herschler,
Wiener, & Salas
(1995)

Morgan, Herschler,
Wiener, & Salas
(1995)
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Physical and Mental Workload

The third issue concerned the nature of workload on the advanced flight deck.

Previous surveys have produced somewhat contradictory results. Some studies

have reported workload problems, particularly workload extremes, while others

have not. Wiener (1989), found that automation increased workload at the

busiest times, but this result was not supported by McClumpha et al. (1991). In

order to explore this issue more fully, subjects were asked to rate both physical

and mental workload separately for each phase of the flight (see Appendix A,

question 55).

Levels of Automation: Promise and Concerns

The fourth issue related to levels of automation, that is, the degree to which

functions or tasks are performed by the pilot, the automation, or some

combination. The question was whether pilots could evaluate different levels of

automation on the basis of their costs and benefits (see Appendix A, questions

78-80). While previous surveys have collected pilots' expectations and concerns

about automation in advanced, in contrast to traditional flight decks, they have

not, to our knowledge, been asked to consider the pros and cons of different

levels of automation.

How many, and what kinds of levels, are meaningful to pilots? Again, the goal

was to establish the psychological validity of the concept of a level, while at the

same time collecting data about the trade-offs between costs and benefits

associated with the different levels. The ability of subjects to assign different

expectations and/or concerns to the different levels would provide evidence that

the distinction between levels was real to them. On the other hand, if subjects

gave statistically indistinguishable responses to the three levels, it would be

difficult to argue that the levels were meaningful.

In developing this survey, our original intent was to gather data on all six levels

of automation proposed by Billings (1991). Billings' automation levels not only

distinguished whether the flight crew or automation, or some combination, was

assigned a particular function or task, but also whether the pilot or the

automation had authority over task performance, and if the automation had

authority, how that authority was delegated by the pilot. Closer examination of

these levels, however, revealed that some of the distinctions among levels were

subtle and ambiguous. We were concerned that opinions about advantages and

disadvantages of different levels, or what the ideal level was for different

situations, would be unreliable given the difficulty of understanding the

differences among levels.

Furthermore, as Regal & Braune (1992) have observed, different researchers have

proposed different schemes. The most extensive is from Riley (1989), who has

proposed seven levels along a "machine intelligence" dimension (ranging from

"raw data" to "the anticipation of operator error") and twelve levels along an
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"autonomous" dimension (ranging from varying degrees of communication with

the pilot to varying degrees of taking action with or without pilot permission or

overrides). Thus it is evident that many dimensions (e.g., task performance,

authority, machine intelligence) underlie different notions of automation levels.

Rather than attempting to examine the whole problem of levels, which we

suspect, along with Riley (1989), will be multidimensional and complex, we

opted, as a first step, to see if a meaningful distinction could be made between

one intermediate level of automation, "shared pilot/automation performance,"

and the two extremes: "fully autonomous" and "unassisted pilot performance"

(see questions 78-80 for definitions). In these questions, subjects were presented

with a list of specific concerns and expectations that had appeared in the

literature (ATA, 1989; McClumpha et al., 1991; Norman & Orlady, 1989,

Appendix A; Parasuraman, Molloy, & Singh, 1993; Pew, 1988; Singh, Molloy, &

Parasuraman, 1993; Wiener, 1989) and were asked to indicate how strongly they
felt each one applied to each of the three levels of automation.

Ideal Level of Automation for Different Situation_

The fifth issue addressed in the survey was pilots' satisfaction with the level of

automation available on their aircraft for particular situations (See Appendix A,

questions 56-77). It is common to hear concerns that aircraft are too automated

or that automation has too much authority, yet pilots applaud many of the most

sophisticated automated systems on their aircraft and express the need for more

automated assistance in some situations. We argue that the ideal level of

automation cannot be judged independently of the particular situation or

context. For example, anecdotal reports from pilots suggest that they feel under-

utilized during normal conditions, due to the amount of automation, but could

use more automation in non-normal conditions. The question then becomes,

what aspects or attributes of the situation affect the ideal level of automation

from the pilot's perspective? Recent work on defining situation awareness

requirements (Deutsch, Pew, Rogers, & Tenney, 1994) suggests that it is useful to

decompose complex situations into simple situations that vie for the pilot's
attention and to decompose those situations into a set of attributes. In the

context of commercial aviation, the attributes that appear to be most important

for defining situations are the environmental and system events that occur and

the tasks and functions that can be carried out. In questions 56 to 77, subjects

were asked to consider the following situation attributes: flight condition (i.e.,

normal, non-normal, emergency); phase of flight; mission function (i.e., flight

control, navigation, communication, systems management, and task

management); human information processing task (i.e., monitoring, processing,

responding); and workload (i.e., high, medium, low) (Deutsch et al., 1994; Regal
& Braune, 1992).

For each category of each situation attribute (e.g., for "high workload" in the

workload attribute; for "navigation" in the mission function attribute), subjects

were asked to indicate: a) the level of automation they had available on their

7



aircraft for that item; and b) the level they would use ideally. They made each of

these judgments on a five point scale, ranging from "unassisted pilot
performance" to "totally automated performance." By comparing actual vs. ideal
level it was possible to see in what situations differences between current and

ideal levels of automation exist. Equally importantly, subjects' ability to
differentiate between the different categories of a particular situation attribute
would suggest that the particular ways of decomposing situations, and the scales
used, were meaningful. It is important to establish the psychological validity of
these categories because the formulation of automation guidelines is likely to
involve this intermediate level of discourse (e.g., For the cruise phase of flight, or
for low workload situations, the ideal level would be shared performance).

Amgunt 0f Automation

The sixth issue again concerned the question of whether the flight deck is over-
or under-automated. Because this issue is such an important one it seemed

worthwhile to approach it in different ways. This time instead of estimating
ideal levels of automation for different situations, subjects were asked to rate the
ideal amount of automation, where amount was defined as the total number of

automated systems or components on the aircraft.

Subjects answered five questions, concerning five different types of automation.
Each question had two parts. In part 'a' they rated the amount of each type of
automation in their current aircraft. In part 'b' they indicated whether the ideal
amount of automation would be more than, less than, or the same as in their

current aircraft.

The questions differed from those in the previous section in the following ways:

.

2.

The questions concerned amount rather than level of automation.

The questions asked about a different set of categories. This time subjects
were asked to consider five types of automation: aircraft control, systems
control, information automation, decision automation, and protective
automation (see Q81-85 for definitions). These categories were derived from
Billings' (1991) distinction between control, information, and management
automation and were expected to have psychological validity.

. In part 'b' subjects indicated how far they thought they were from the ideal
amount of automation. This time there was no need to subtract the responses

of part 'b' from 'part a' because subjects compared the actual to the ideal
directly in 'b.' (Another reason for not subtracting was that the two scales
were not equivalent.)

Phenomenological Experiences

The sixth and final automation issue concerned the question of how to talk about

the phenomenological experience of using automation. Dimensions of
experience that have been emphasized in the literature and are clearly of



relevance to designers are the notion of workload (e.g., Adams, Tenney, & Pew,

1994; Gopher & Donchin, 1986; Wickens, 1992) and situation awareness (e.g.,

Adams, Tenney, & Pew, 1995; Endsley, 1995; Gilson, Garland, & Koonce, 1994;

Sarter & Woods, 1991; Taylor, 1989; Taylor & Selcon, 1993). There is another

dimension of experience, however, that has been noted persistently in the

literature, but whose ramifications have not yet been explored (Billings, 1991;

Hollnagel, 1991). It has to do with the feeling that one is having a direct as

opposed to an indirect, or mediated experience. An example of a direct

experience would be the feeling, when driving, that one can sense the bumps on

a road directly, rather than through the tires. The same distinction is believed to

occur in aviation. Pilots may feel that they are controlling certain aspects of the

flight directly, even though they are assisted by automation. On the other hand,

they may become so involved with the demands of the automation, that their

attention is completely diverted from the flight. In such cases, pilots may feel

that they are managing or supervising the automation rather than controlling the

flight. This kind of indirect experience is believed to occur when the automation

is new, cognitively demanding, or otherwise obtrusive (HoUnagel, 1991).

In order to explore this dimension, subjects were presented with a list of 31 flight

deck automation systems they were likely to have encountered and were asked

to rate each one on several different dimensions of experience, including

situation awareness, or "knowledge of the big picture," workload, the

controlling/managing dimension, distractibility, predictability, and frequency of

use (see Appendix A, questions 1-31). (Slightly different scales were used for the

alerting questions, 27-31).

The list was compiled based on components described by Billings (1991) and

McGuire et al. (1991). It was then reviewed by two retired airline pilots. They
added and subtracted items based on whether the items made sense in terms of

the scales subjects would use to rate them and whether they were described in

language that would be unambiguous to pilots. Some items, mostly ones that

were either completely transparent or required no pilot interaction, were

eliminated based on preliminary data indicating that they would produce

uniform responses.

Results were analyzed to see if the dimensions clustered into sub-dimensions

and to see which pieces of automation gave rise to which types of experience.

The results of the questions relating to phenomenological experiences will be

described in the results section, but the supporting tables summarizing the data

are provided in Appendix B.

Mi_llaneous

Included in the questionnaire for other purposes were some questions designed

to assess preferences for specific design options. Two questions (see Appendix

A, questions 42,43) related to how autopilot modes are organized. The

functioning of the autoflight systems differs among aircraft types. In terms of a
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philosophy, it hasbeensuggestedthat the autoflight modes should reflect what it

is that pilots really want to control, that is, speed, lateral path and vertical path.

Conventional systems typically are organized by thrust, roll, and pitch, the

aircraft parameters that are directly affected by control inputs. Secondly, given

that autoflight modes have become very complex and are suspected as factors in

several recent accidents, a question about the predictability of mode transitions

was asked. A third question addressed the use of synthetic speech (see

Appendix A, question 44). Synthetic speech is seen as a technology that can

facilitate presentation of information to the flight crew, particularly in high visual

workload conditions, but commercial flight decks have traditionally been very

conservative in regard to introduction of such technologies. A fourth question

related to the overall amount of information available on the flight deck (see

Appendix A, questions 45); the question has continually been raised as to

whether there is too much information on today's flight decks, but to our

knowledge a pilot sample has never been directly asked. Two questions address

decision aids and the presentation of probabilistic information (Q49,50). As

decision aids and artificial intelligence technologies continue to advance, and

automation becomes more capable of probabilistic assessments, the question

arises as to how certain information should be before it is presented to the pilot.

Finally, seven questions (Q88-94) addressed issues related to the ongoing design

of the High Speed Civil Transport (Alter & Regal, 1991; Regal & Alter, 1993;

Swink & Goins, 1992). These included questions concerning the use of displayed

sensor and database data to replace forward vision lost due to the elimination of

forward windows, and questions concerning the best control device, that is, a

side stick, wheel and column, or center stick. The results of these questions will

be presented and discussed in Appendix C. 1

METHOD

Subjects

Captains and First Officers actively flying Boeing B747-400, McDonnell Douglas

MD-11, and Airbus A-320 aircraft for U.S. airlines were recruited for this survey.

A total of 132 pilots, 47 B747-400 pilots, 39 MD-11 pilots, and 46 A-320 pilots,

completed the survey. The sample included one female. The distribution of

Captains and First Officers across airlines and aircraft types is shown in Table 2.

1 Also included, for exploratory purposes, were four open-ended questions (Q 53, 54, 86, 87).
The results will not be discussed in this report.

10



Table 2

Number of Captains and First Officers Completing the Survey by Aircraft
Type and Airline

Aircraft Type Airline Seat Number of Pilots

B747-400 Northwest Captains 2
(N--47) First Officers 17

United iCaptains 3

First Officers 25

MD-11 American Captains 11

(N=39) First Officers 2

Delta Captains 13

First Officers 13

A-320 Northwest Captains 5

(N--46) First Officers 2

United Captains 10

First Officers 11

America West Captains 8

First Officers 10

The mean age of pilot subjects was 45.9 with a range of 28 to 59. Subjects

averaged 18.9 years of commercial flying experience, 12704 total flying hours,

and 15.8 years of formal education. All subjects had experience on jet aircraft

other than the one for which they were currently type rated. Classification of

three of the subjects, in terms of aircraft type, was problematic because they were

currently type-rated on both the Airbus A-320 and the Boeing 747-400. In those

cases, subjects were assigned to the aircraft in which they indicated more flying
hours. 2

It is apparent from Table 2 that for unknown, assumably random reasons, there

was an unequal distribution between Captains and First Officers. The proportion

of First Officers in the groups varied as follows: Boeing 89%, Douglas 38%, and

Airbus 50%. Table 3 shows the background characteristics of subjects in the three

aircraft groups. These data were compiled from the biographical forms that each

subject filled out. Unfortunately, due to the unequal representation of Captains

and First Officers across aircraft types, differences emerged in their background

2 One subject in this category was inadvertently misclassified as Boeing instead of Airbus.

11



characteristics, complicating the task of comparing the aircraft groups. As can
be seen in the table, Douglas pilots were, on the averagenine or ten years older
than the other pilots and, as a result, had more total flying hours and more hours

flying as pilot in command. The analyses of variance for these characteristics

were all significant: F(2,126)=23.23, p<.0001 for age, F(2,127)=14.93, p<.0001 for

total flying hours, and F(2,125)=10.94, p<.0001 for hours as pilot in command.

Tukey tests revealed that in all cases, the Douglas pilots differed from the other

two groups (p<.05), which did not differ from each other (p>.05).

Table 3

Biographical Data for Pilots of Different Aircraft

Boeing Douglas Airbus

747-400 MD-11 A-320

(N=47) (N=39) (N=46)

Age 42.6 52.3 43.8

Total Hours 11,393 16,154 11,160

Flying
Total Hours as 5,041 9,045 5,688

PUot-in-

Command

Years of Formal 16.3 15.2 15.8

Education

As will be clear from subsequent sections, these problems prevented us from

drawing conclusions about some of the comparisons that we had intended to

make. The aircraft differences we were able to report with confidence met the

following criteria:

1. The results for the different aircraft were in line with expectations.

2. Supplementary analyses, based on an unconfounded subset of the data (e.g.,

only Boeing and Airbus first officers), supported the original analysis.

Materials

A package of materials was sent to each subject. It included a cover letter

explaining the general intent of the survey, a one-page background questionnaire

(see Appendix A), the survey, and an envelope in which to return the survey.

The survey itself consisted of 34 pages, and included four sections with a total of

94 questions (see Appendix A).

Procedure

U.S. commercial airlines were identified that operated the B747-400, MD-11, and

A-320 aircraft. The airlines were called and a contact person (usually the Chief
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Pilot) for each type of aircraft was requested. The Chief Pilots were called and
informed about the study. Chief Pilots contacted Fleet Captains for each aircraft

type, who posted flyers and/or messages where flight crews could read them.

Equal numbers of Captain and First Officer volunteers were requested from each

airline; the goal was to have 150 respondents, 25 Captains and 25 First Officers

for each aircraft type, but as can be seen from Table 2, respondents for some

airline and aircraft types were skewed in terms of number of Captains and First

Officers, and the total number of subjects responding was less than desired.

Volunteers signed up with Fleet Captains and a list of names and addresses was

compiled and forwarded to one of the researchers, who then mailed the materials

package to each subject on the list.

Volunteers were requested to return the survey within a week and were paid

$150 for completing the survey. One hundred sixty surveys were sent out and

132 were returned (Surveys were accepted even if they were late). Subjects were

asked to complete questions pertaining to specific automation components based

on their current aircraft. They were given the name and number of one of the

researchers so that they could call for clarification or explanation of any question

they did not understand. Half a dozen calls were received, all requesting

clarification of the automation pieces listed in questions 1-31.

RESULTS

The results for each of the major issues the questionnaire was designed to

address will be discussed for the sample as a whole. Subsequently effects

attributable to the aircraft currently flown will be explored.

Philosophy

In questions 32-41 and 46-48, subjects responded to thirteen questions designed

to assess agreement with a human centered, as opposed to a fully autonomous

viewpoint. A human-centeredness score was calculated for each subject by

averaging the responses to the thirteen philosophy questions (Q32-41; 46-48).

Before calculating the averages, the polarity of some of the questions was

reversed, and the scores transformed accordingly, so that a five always

represented the human-centered end of the scale. The polarity of the questions

had been varied randomly, to avoid calling the subject's attention to the
dimension of interest.

The average response to the twelve questions, across all 132 subjects, was 3.53.

This score showed that subjects endorsed the human-centered view, but not as

strongly as they could have. An examination of each of the separate philosophy

questions showed that subjects responded on the human-centered side of the

scale consistently for all but one question. (This exception will be discussed

shortly). (See Figures la to lm showing the frequency of responses to each

question at each scale point).
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O48

Question 37 (Figure lf) elicited the strongest human-centered response. Subjects

were nearly unanimous in proclaiming that the pilot will still be responsible for

flying the aircraft in the future (mean =4.9). Not surprisingly, given this view,

subjects also felt strongly on Q32 (Figure la) that beginning pilots should learn

about the "basic airplane," before learning to use the automation (mean=4.05).

They also showed a strong preference for automation that assists the pilot in

problem solving, as compared to one that automatically solves problems (Q33,

Figure lb), another central tenet of human-centered philosophy (mean, with

reversed scale,=3.86).

The only score to fall slightly to the full-automation side of the scale for the

average subject was Q39 (Figure lh). This question asked whether the greatest

obstacle to total flight safety was system design or human performance. The

assumption was that proponents of the human-centered view would focus on the

problem of poorly designed systems while proponents of the full-automation

view would point their finger at human foibles. Interestingly subjects proved to

be more sympathetic to the full-automation view on this question than on any of

the others, responding on the "human performance" half of the scale (mean=2.61,

reversed scale). The respondents may have been influenced by the statistic that

"pilot error" is responsible for two thirds of all aircraft accidents (Regal &

Braune, 1992). Another interesting finding was that on the question concerning

envelope protection (Q41, Figure lj), the B-747 and MD-11 pilots responded on
the human-centered side, while the A-320 pilots responded on the full-

automation side. This result will be discussed in the section on Aircraft

Differences.

These results provide support in the pilot community for the human-centered

design philosophy that has been favored by researchers. In constructing the

scale, effort was made to avoid making one of the poles sound like the "right

answer." The fact that only one of the questions was close to the ceiling (Q, 37),

lends credence to the measurement technique and suggests that the questions

received careful consideration.
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Good/Trustworthy Automation

The average ranking was calculated for each of the eleven attributes for good
automation (Q51) and then for trustworthy automation (Q52). The attribute that

received the most favorable average ranking in each case was then ranked #1, the

next best attribute #2, and so forth. The rank orders obtained in this way are
shown in Table 4.

Table 4

Rank Ordering of Attributes for Good and Trustworthy Automation

Q51-52

Attribute

Dependable

Predictable

Simple

Comprehensible

Info_uLative

Subordinate

Flexible

Error-resistant

Accountable

Adaptable

Error-tolerant

Rank for Good

Automation (Q51)

1

2

3

4

5

6

7

8

9

10

11

Rank for Trustworthy
Automation (Q52)

1

2

4

3

5

8

10

7

6

11

9

Note. The ranks indicated are a rank ordering of the average ranks given for the attributes.

As can be seen in the table, the results for the two questions were highly

correlated (Spearman's R=.86, p<.001). Although, Q51 had stressed safety and

economy, while Q52 had emphasized pilot acceptance and use, subjects failed to

make a distinction between "good" and "trustworthy" automation. Striking in
both cases was the clear "back to basics" response. An examination of the first

five ranks showed that pilots want automation that works (i.e., is dependable)

and that they can understand (i.e., is simple, predictable, and comprehensible).

All other features were considered, by their lower ranks, to be secondary. The

message seems to be: Don't try anything fancy (i.e., flexible, adaptable,

accountable, error-tolerant or error-resistant), just give me something I can use.

Billings (1991) has suggested that certain of the attributes on the list oppose

certain others, in the sense that emphasizing one often forces a de-emphasis on

the other. The following attribute pairs, he believes, bear such a relationship:
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• Accountable---Subordinate

• Predictable--Adaptable

• Comprehensible--Flexible

• Dependable--Informative

• Error-resistant--Error-tolerant

The present results suggest the following prioritization for these pairs. With the

exception of the first pair (accountable-subordinate), for which rankings were
inconsistent across Q51 and Q 52, the rankings showed a clear preference for the

left hand members of each pair.

With respect to the problem of human error, the rankings suggest that pilots

want to prevent error from happening in the first place rather than trusting a
machine to correct it. Towards that end, their first desire is for automation that is

easy to use (ranks 1-5), their second is for error-resistant systems that will check

for typical kinds of mistakes (rank 7 or 8) and their last is for automation that will

try to help out after an error has occurred (rank 9 or 11).

In sum, the rankings show a preference for simple, easy to use systems over truly

leading edge technologies. They lend further support to the human-centered

attitudes of the pilots revealed in the philosophy questions.

Physical and Mental Workload

In Question 55, respondents were asked to rate workload for glass cockpits in

comparison with conventional cockpits. Responses were made on a five point

scale where I was "much lower than in conventional cockpits," 3 was "about the

same," and 5 was "much higher." The average physical and mental workload

ratings obtained for each phase of a flight are shown in Figure 2. These averages
are based on 111 out of the 132 subjects. Four subjects had to be eliminated for

failure to respond to all parts of the question. The additional reduction in sample

size was necessary to equalize the numbers from each of the three aircraft groups

so that a mixed-factors analysis of variance could be carried out, with aircraft as a

between-subjects factor (Results of the aircraft analysis will be discussed in a

later section). Subjects were retained in the order in which they had responded

to the survey.
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The results support the conventional wisdom that automation has reduced

physical workload more than it has mental workload. Regarding physical
workload, inspection of the portion of the curve that is below 3.0 ("about the

same as in conventional cockpits") shows that physical workload was rated as

being lower than in the conventional cockpit for all flight phases except two: pre-
flight (4.04), which was substantially higher and taxi (3.14), which was about the

same. The physical aspect of punching buttons into the computer and talking to

ATC in these phases may be responsible for the high physical workload ratings

for these phases. While these actions are not physically exhausting, in the usual

sense of high physical workload, they do entail being physically busy. The

biggest reduction in physical demands can be seen in the cruise phase (1.69),

presumably reflecting the widespread use of flight control and navigation
automation.

Mental workload ratings, showed the same general ups and downs across phases

as physical workload. However, the difference in workload in glass cockpits in

relation to conventional cockpits was more pronounced for physical workload
than for mental workload.

These observations were supported by statistical analysis. A two-way repeated

measures analysis of variance, with workload type (physical vs. mental

workload) and flight phase as within-subject variables revealed a main effect of

workload type, F(1,110)=30.57, p<.0001, a main effect of flight phase

F(6,660)=1215.6, p<.0001, and a significant interaction between workload type
and flight phase (F(6,660)=5.671, p<.0001.
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Individual comparisons were carried out by a Tukey test (significance was
assessed at the .05 level for all Tukey tests in this report). The results revealed

that the rating of mental workload differences between glass and conventional

cockpits were significantly different than the rating for physical workload
differences for the cruise (p<.05) and approach (p<.05) phases and just missed

being significantly different for landing (p<.10).

The Tukey test also showed the following pattern of change over flight phases:

Ratings of both physical and mental workload differences between glass and
conventional cockpits changed significantly from pre-flight to taxi (p<.05) and

from taxi to take-off (p<.05). Physical, but not mental workload differences,

changed from climb to cruise (p<.05), and both types of workload difference

ratings changed from cruise to approach (p<.05).

In summary, the results showed that pilots feel that mental workload has not
been reduced in the automated cockpit to the same extent that physical workload

has. Both physical and mental workload were rated as markedly higher in glass

cockpits than conventional cockpits for pre-flight, and slightly higher for taxi.
Mental workload was rated as slightly higher or the same in glass cockpits for

approach and landing.

L_vel8 of Automation: Promise and Concerns

In questions 78-80, subjects indicated how much they agreed or disagreed with
claims about different levels of automation. First, they rated all the possible

advantages, or promises, of each level (part 'a') and then the possible

disadvantages, or concerns (part 'b').

An overall "promise" and an overall "concerns" measure were obtained for each

of the three levels of automation of interest by averaging the responses to each

item in Q78-80a, and Q78-80b, respectively for each subject. The average

measures, across subjects, are shown in Figures 3a and 3b, respectively. The

number of subjects included in the analysis, after eliminating the few non-

responders and equalizing the aircraft groups, was 114 and 111 out of 132 for

the" promises" and "concerns" analyses, respectively.

The overall promise rating (see Figure 3a) was significantly lower for the pilot
unassisted (2.68) than for the shared or fully autonomous levels, F(2,226)=91.813,

p<.001. The shared and autonomous levels were rated identically overall (both
3.79). An examination of Table 5a shows that pilots felt that the autonomous

level has the most promise to "alleviate fatigue, .... reduce workload," "provide
,,. ,,

more precise data," increase safety, and "increase airline cost effectiveness," but
could not match the shared level for "keep me involved," "keep me informed,"

improve my performance," and "improve my situation awareness." Neither level

could top the unassisted level for "keep me involved."
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Concern ratings showed a clear differentiation of levels (see Figure 3b). Overall

concern grew from 2.3 to 3.29, as automation increased, which was a significant
difference, F (2,220)=96.001, p<.0001. A Tukey test showed that each of the levels

differed significantly from the others. These results were highly stable:
Inspection of individual items (see Table 5b) showed that all but four of the items

increased regularly across levels.

Major concerns at the fully automated level were increased head-down time

(4.05), complacency (3.95), and degradation of pilot skills (3.90). These items,

which have to do with the pilot's ability to "stay in the loop," are related to the

fear that full automation will not "keep me involved" expressed earlier in the

promises section. Fourteen out of the eighteen items on the list received scores

above 3.0, indicating they were of moderate to high concern at the fully
automated level. The four that were of lower than moderate concern were

"temperamental devices," "difficulty in learning to operate," "need for new

skills," and "difficulty in detecting system errors."
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Table 5a

Average Promise Rating at Each Level of Automation

Promise

keep me involved

keep me informed

improve my

performance

improve my
situation

awareness

alleviate fatigue

reduce workload

provide more

precise data

increase _fety

increase airline

cost effectiveness

Pilot Unassisted

4.24

3.18

2.87

2.98

2.03

1.88

2.32

2.25

2.42

Shared Control

4.14

4.21

3.89

3.96

3.47

3.42

3.71

3.82

3.58

Autonomous

3.15

3.99

3.56

3.78

3.65

4.08

4.14

3.90

3.68

Note. The rating scale was: 5 = agree 1= disagree "that automation at this level holds the promise

to..."
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Table 5b
Average Concern Rating at EachLevel of Automation

Q78b-80b

Disadvantage

temperamental devices
display complexity
losing sight of the
raw data

difficulty in learning

to operate

data entry errors

software engineering
eITOl'S

need for new skills

unforeseen and

unintended negative

consequences

workload extremes

(high and low)

increase in the no. of

alerting si_nals
loss of situation

awareness

need to work around

automation in unusual

circumstances

increased head-down

time

difficulty recovering
from automation failure

degradation of pilot skills

difficulty in detecting

system errors
reluctance of crew to

take over from automation

Pilot

Unassisted

1.85

2.15

1.90

2.05

2.33

2.09

2.06

2.83

3.83

2.46

2.94

2.06

2.67

1.94

1.85

3.12

1.78

Shared Control

2.48

2.78

2.77

2.54

3.12

3.11

2.62

2.82

3.10

3.11

2.65

2.94

3.54

2.97

3.11

2.73

2.60

Autonomous

2.76

3.13

3.34

2.95

3.32

3.43

2.78

3.10

3.32

3.40

3.16

3.34

4.05

3.46

3.90

2.71

3.12

complacency 2.30 3.13 3.95

Note. The rating scale was: 5 -- high concern 1 = low concern "that automation at this level could
lead to ..."
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For shared performance, only seven out of the eighteen items were rated higher

on average than "3," indicating more than moderate concern. The items that

dropped from the high concern half of the scale to the low half between fully

autonomous operation and shared performance were: display complexity, losing

sight of raw data, unforeseen and unintended negative consequences, loss of
situation awareness, need to work around the automatics in unusual

circumstances, difficulty in recovering from an automation failure, and

reluctance of crew to take over from automatics.

Although pilots generally had fewer concerns about flying unassisted than about

flying with automation, they did see clear advantages to automation. Two

concerns, workload extremes (3.83) and difficulty in detecting system errors

(3.12), were seen as concerns at the unassisted level that were alleviated by the

introduction of automation.

In summary, subjects showed, through their concerns and promise ratings, that

they have no trouble thinking about three different levels of automation. In
terms of costs and benefits, the intermediate level seemed to be the most

advantageous, because it showed as much promise as the fully automated level

with fewer concerns.

Ideal Level of Automation for Different Situations

In a series of questions subjects were asked to rate the maximum level (Q56-77)
of automation on their current aircraft (see part 'a') and the level that they would

ideally use (see 'b' part ). The questions were asked for five attributes of the
situation that could affect the actual and ideal levels of automation: flight

condition (i.e., normal, non-normal, emergency) (Q56-58); phase of flight (Q59-

66); mission function (i.e., flight control, navigation, communication, systems

management, and task management) (Q67-71); human information processing

task (i.e., monitoring, processing, responding) (Q72-74); and workload (i.e., high,

medium, low) (75-77).

A measure of the subject's satisfaction with the level of automation in his current

aircraft, with respect to the ideal, was calculated by subtracting the ideal rating

from the actual rating for each question. The "actual minus ideal rating" captures

the subject's satisfaction in the following way: A positive rating means that a

higher level of automation is available than pilots ideally would use, a negative

rating means that the highest level available is lower than they ideally would
use, and a zero means that the highest level available is the same as the ideal

level they would use. A negative rating indicates that perhaps higher

automation levels should be considered for that particular situation.

The "actual minus ideal" ratings for each of the five situation attributes are shown

in Figures 4a-4e. For these analyses, the sample was again reduced to 111 out of

132 to achieve equal numbers in the three aircraft groups. A one-way, repeated
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measures analysis of variance, with category as the factor (e.g., high, medium,
and low for the situation attribute labeled "workload,") was carried out on the

"actual minus ideal" scores for each of the situation attributes. The results

showed a significant main effect of category (p<.0003 for human information

processing task, and p<.0001 for all other situation attributes). In other words, the

different perspectives afforded by each of the situation attributes helped subjects

to identify situation categories for which they could use higher levels of
automation in contrast to those for which the available automation level was
sufficient.

The most interesting categories in each analysis were those for which pilots

indicated a level of automation that departed from the ideal. For every bar in

Figures 4a-4e, a t-test for repeated measures was conducted to determine if the

actual level (part 'a') was significantly below or above the ideal ( part 'b'). To
correct for multiple comparisons, the probability level for the t tests in each

classification scheme was multiplied by the number of t tests conducted.

The following categories were found to be significantly above the ideal in the

level of automation available to aid pilots (p<.05, adjusted): normal flight (see

flight conditions, Figure 4a), climb, cruise, descent, and landing (see flight phase,

Figure 4b); flight control (see mission function, Figure 4c). This finding does not

mean that the higher levels of automation should be eliminated for these

situation categories, but it does indicate that lower levels should be available for

pilot use. It also has implications for the likelihood that pilots will resist using
higher levels of automation in some situations, and should be taken into account
in training and operations.
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Satisfaction with level of automation for different flight

conditions. A positive rating means that the automation

level available is higher than the respondent's ideal level.
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Q59-66

Flight Phase

Satisfaction with level of automation for different flight

phases. A positive rating means that the automation level
available is higher than the respondent's ideal level.
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The following categories were found to be significantly below the ideal in the

level of automation available to aid pilots (p <.05, adjusted): preflight and taxi

(see flight phase, Figure 4b); communication and task management (see mission

function, Figure 4c), responding, defined as performing goal-oriented actions (see

human information processing task Figure 4d); high workload (see work/aad, Figure

4e). This finding, of the need for more automation to deal with pre-flight and

taxi, communication and task management, and high workload situations,

reinforces the message of earlier sections--a plea for attention to the crew's

mental workload.

Amount of Automation

In a series of questions (Q81-85), subjects were asked to rate the amount of

different types of automation on their current aircraft (part 'a') and then to

indicate whether ideally, they would want less, the same amount, or more

automation than they currently have (part 'b'). The average ratings for the two

parts of the questions are shown in Figures 5a and 5b, respectively.

The results of part 'a' (see Figure 5a) showed that subjects felt that their aircraft
had at least a "moderate" amount of automation in all categories. The pilots felt

they had the largest amounts of automation for aircraft control (mean of 4.34)

and systems control (4.18.). Information automation, defined as automation that

informs the pilots about the aircraft and systems states, operations, procedures,

regulations, and location of the aircraft and relevant entities in the environment,

was also considered prevalent (3.94). Pilots felt they had a lower amount of

protective automation (3.52). Decision automation, defined as automation that

aids the pilot in selecting alternatives and making choices, came out lowest (3.11).

An F test for repeated measures indicated that the overall difference between

automation categories was significant, F(4, 440)=59.169, p<.0001. A Tukey test

indicated that each of the ratings for the different automation categories differed

from the others (p<.05), with the exception of one pair, aircraft control and

systems control, which were statistically indistinguishable (p>.05).
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The results for part 'b,' in which pilots indicated the ideal amount of automation

with respect to their current aircraft are shown in Figure 5b. On this scale, a 3.0

indicates a belief that current levels are ideal, a score of more than 3.0 means that

more automation is desired and a score below 3.0 means that less is desired. The

average ratings were all slightly above 3.0, indicating that pilots would prefer,

ideally, to have slightly more automation than they currently have in all

categories. The two categories that came closest to the ideal were aircraft control

(3.3), followed by protection (3.4) automation. Although pilots indicated in part
'a' that they did not have a large amount of protective automation on their

aircraft, they evidently felt that the amount was close to ideal. The biggest needs

were for more information (3.7), decision (3.6), and systems (3.6) automation.

An analysis of variance for repeated measures showed a significant effect of

category, F(4,440)=8.457, p<.0001. A Tukey test confirmed that the need for

information and decision automation was significantly greater (p<.05) than the

need for more control or protective automation. The need for systems

automation was also significantly greater (p<.05) than the need for more control
automation.

Phenomenological Experiences

In questions 1-26 subjects rated different automation systems on seven

dimensions (parts 'a' through 'g'). Questions 27-31 were similar, except that

subjects rated different cockpit alerts on six different dimensions (parts 'a'
through 'f'). Tables B1-B13 in Appendix B show the order in which the

components fell on each of the dimensions, respectively. All 132 subjects were

included in this analysis, but subjects were not required to answer all questions.
They were requested to leave a blank if they were not familiar with the

component. Overall, subjects left 6.8% of the components unrated (data showing
which components were omitted will be presented in a subsequent section
concerned with aircraft differences).
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Ratings were averaged across subjects and automation components for each
dimension queried. Before the averages were calculated, the rating scales for

some of the questions (parts a, c, d, and f of Q1-26) were reversed from the way

they appeared on the questionnaire, so that a '5' always indicated the desirable

end of the dimension.

The average rating across all components and subjects is shown in Table 6 for

each of the dimensions. It is clear from these data that subjects were favorably

inclined towards the automation systems on their flight deck, though they had

some reservations. On questions 1-26, they found the automation components to

be unobtrusive (4.00), predictable (3.97), extremely helpful for reducing workload

(3.82), and they were inclined to use them whenever appropriate (4.39). On the

other hand, they were close to the midpoint when it came to the feeling that they

were controlling the flight rather than managing the automation (3.25, where '5' =

high controlling), and the feeling that they were focusing on the flight rather than

on the automation (3.61, where '5' = attention to flight).

For questions 27-31, subjects clearly trusted the alerts (4.27) and found them

compelling (4.87, see Table 6). They gave lower ratings, however, to the ease of

returning to tasks after an alert (3.50), degree to which the alert can be responded

to without thought (3.52), and immediacy of knowing what the problem is (3.65).

While these responses were on the positive half of the scale, they were close to

the borderline.

To assess whether any of the separate dimensions might have a common basis

from the pilots' perspective, correlations were calculated for each of the
dimensions in Q1-26 and Q27-31, respectively, paired with each of the others.

The two correlation matrices are presented in Tables 7a and 7b.

For Q1-26, all but one correlation were significant (see Table 7a). The three

highest correlations were for: 1) the two dimensions describing the automation

(unobtrusiveness 'c' and predictability 'e', R=.7050, p<.001); 2) the two describing

the pilot (situation awareness 'b' and workload reduction 'f', R=.6698, p<.001);
and 3) the two describing the interaction between pilot and automation (attention

on flight/automation 'a' and feeling of controlling/managing 'd', (R=.6254,

p<.001). These three clusters, while not completely independent, provide a
useful structure for thinking about automation experiences.

3O



Table 6
Average Rating of Automation Components on Each Dimension

Q1-26and Q27-31

Questions
1a-26a
1b-26b
lc-26c

1d-26d

le-26e
1f-26f

1g-26g
27a-31a
27b-31b
27c-31c
27d-31d
27e-31e
27f-31f

Dimension

attention on flight*/automation

understanding of thebig picture
unobtrusiveness

con trolling*/managing

predictability

workload reduction

frequency of use

attention-getting

trust in alert

knowing what the problem is

ability to respond without thought

ease of returning to task after alert

scarcity of alert occurrences

Average Across

Components

3.61

3.79

4.00

3.25

3.97

3.82

4.39

4.87

4.27

3.65

3.52

3.50

3.65

Note. Rating scales for some dimensions were reversed from the way they appeared in the

questionnaire so that 5 = the favorable end of the continuum for all dimensions. A * is used to
indicate the favorable end where it is not obvious from the dimension name.

1-26a r

1-26b

1-26c r

l-_6dr

1-26e

1-2_

Attention

to Flight

1-26a r

L00

Table 7a

Correlation of the a-g Components for Q1-26 +

Situation

Awareness

1-26b

.2871"*

1.00

Unobtrusive

1-26rc

.4651"*

.3213"*

1.00

m

Feeling of

Controlling

1-26<1r

.6254**

.2093*

.4124"*

1.00

Predictable

1-2Kw

.4388 **

.3637**

.7050"*

.3330**

1_110

Workload
Reduction

1-26_

.2764**

t rathe, **

.4709"*

.1567

.4121 **

1.00

Frequency
of Use

.3229**

.1870"

.53S6"*

.2384"*

.&_qAA**

1.00

+Seven component scores (averaged across Q1-26) were entered for each subject.

rThe 1-5 scale was reversed from the way it appeared in the questionnaire so that '5' would
uniformly represent the favorable pole.
* , , .

Slgmficant at the .05 level. *"Significant at the .01 level.
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Table 7b
Correlation of the a-f Components for Q27-31+

Attention Know Can Respond

Gettin 8 Trust Exactly Automati-
cally

27-31a 27-31b 27-31c 27-31d

27.x31a -'--- 1.1)0 _ _ .1678
..3779

27-31d __-

27-31e
27-31f

+Six component scores (averaged across Q27-31) were entered for each subject.

*Significant at the .05 level.

*"Significant at the .01 level.

Fauty to
Resume

27-31e
.O979

1.00

Frequency
of Alert
27-31f

-.1221

L00

The high correlation found between the two questions intended to explore the
direct/mediated experience (attention on flight/automation; feeling of

controlling/supervising) suggests that this distinction has psychological validity.
Tables B1 and B4 in Appendix B show the components listed in order of the

ratings they received on these dimensions. Components at the top of the list

were rated highest on allowing attention to the flight (or a feeling of controlling

the flight), while those at the bottom were highest on directing attention to the

automation (or a feeling of managing the automation).

An examination of the lists in Tables B1 and B4 in Appendix B substantiates that

the 'a' and 'd' dimensions were highly correlated. In both cases, the types of

automation at the top and bottom differed strikingly from each other. At the top

of both lists, representing the extreme direct experience (attention to flight and

feeling of controlling the flight) are: the hydraulic amplification of inputs, auto

ground spoiler, fly-by-wire controls, and automatic rudder. As would be

expected, the ratings confirm that these controls require little attention and do
not detract from the flying experience. At the bottom, representing the extreme

mediated experience (attention to the automation, feeling of managing the

automation), by contrast, are: FMC-flight planning FMC-auto manage, FMC

LNAV and VNAV, ACARS, and subsystem schematics, as well as the auto

landing. With the exception of auto landing, these components either require

complex pilot input as previous studies have suggested (Sarter & Woods, 1994),

or are complicated enough to distract attention away from the flight.
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The inclusion of auto landing in this group of highly interactive systems rather

than with the other flight control systems at the top of the list is revealing. It

suggests that landing with this system does not free the pilot from doing the job,
at least not mentally. The lack of familiarity with the system and the fact that this

flight phase is extremely critical may be factors contributing to this feeling.

The correlation between situation awareness and workload reduction also is of

interest. Note that the correlation is a positive one: Components listed as

resulting in higher situation awareness generally were rated high in workload

reduction (see Tables B2 and B6 in Appendix B). This finding is very
encouraging since one might expect situation awareness to incur a workload

penalty--that is, it takes effort and attention to develop and maintain situation

awareness. The fact that automation components generally seem to increase

situation awareness without increasing workload is a somewhat unexpected

benefit. There are notable exceptions however. The FMC and TCAS traffic

display were rated as providing high situation awareness, but also were rated as

high in workload (see Tables B2 and B6 in Appendix B). The improved situation

awareness with these components does come with a penalty. The automatic
rudder and hydraulic amplification of inputs were rated low in workload but

also low in situation awareness. These represent the classic case of automating

functions that take the pilot out of the loop which results in their being less
involved and informed than if the function were not automated.

For Questions 27-31, most of the correlations between dimensions were

significant (see Table 7b). However, there was no evidence for any higher-order

dimensions. It is interesting to note the strong negative relationship between

trust and frequency of alert (R---.3316); it is very likely higher frequency means

higher false alarm rates, which obviously reduces trust in the alert. The alerts

that are trusted the least (master caution and warning and TCAS traffic

advisory), are also the ones that require the most thought in responding (see
Appendix B, Tables B9 and Bll).

Aircraft Differences

The effect of flight deck experiences on pilot attitudes and opinions was
examined by comparing survey responses of the pilots in the three aircraft

groups (Boeing 747-400, Douglas MD-11, and Airbus A-320). These flight decks

are thought to vary along a dimension of increasing technology, from Boeing, to

Douglas, to Airbus. Evidence in support of this difference was sought by

examining the number of components in questions 1-26 that subjects were able to

rate. Subjects were instructed to leave a question blank if the aircraft that they
currently fly did not have that automation component. Because the list was

constructed to be a representative inventory of the types of automation systems

found on advanced flight decks, the number of blanks serves as at least a rough

measure of the extent of the automation on the different aircraft. The average

number of blanks was : Boeing 2.8, Douglas 1.4, Airbus 1.1. An analysis of

variance showed a significant effect of aircraft, F(2, 129)=11.258, p<.0001. A
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Tukey test revealed that Boeing had significantly more blanks than either Airbus

or Douglas. However, the latter two did not differ from each other (Tukey

p>.05). Using blanks as a measure, we can at least be confident that Boeing is less

automated than the other two groups.

Philosophy. There were no overall group differences in responses to the

philosophy questions (Q3242; 46-48), F(2,129)<1, p>.05. The average human-
centeredness scores were: Boeing 3.55 Douglas 3.54, Airbus 3.49. However,

examination of individual questions revealed a significant difference on question

41, which concerned attitudes towards envelope protection, F(2,129)=7.728.

p<.0007. A Tukey test indicated that the mean for the Airbus pilots (2.67) was

significantly (p<.05) less human-centered than the mean for either the Boeing
(3.45) or Douglas pilots (3.59), who did not differ from each other (p>.05). On

this question, the Airbus pilots were the only ones to favor an envelope system

that actually prevented envelope exceedence as opposed to just providing an

advisory. This difference is interesting because it reflects the envelope features

available on the respective flight decks.

Good/Trustworthy Automation. There were no obvious group differences in

rankings of the attributes for good and trustworthy automation in questions 51

and 52. The average ranking for each of the attributes was similar across groups.

Physical and Mental Workload. Analysis of the workload ratings in question 55

produced one of the two results (see next section) in which the Douglas pilots

appeared to differ from the others. In this case, there was a significant
interaction between aircraft type and flight phase, F (12, 648)=2.639, p <.002, with

the Douglas pilots reporting a significantly higher overall workload than the

other pilots for two flight phases, approach and landing (Tukey, p<.05). These

results are uninterpretable, however, because of the confounding with

background. They may reflect the conservatism of an older and more

experienced group of pilots, rather than a real aircraft difference.

L_vels of Automation: Promise an_i Concerns. Analysis of the promise ratings

for the three different levels of automation in question 78 showed no aircraft

differences. The concern ratings, however, were similar to the workload ratings

discussed above in showing a higher overall concern from the Douglas pilots

than from the others at every level, F(2, 108)=6.922, p<.002; Tukey<.05). Again,

these results may reflect a conservative bent rather than real aircraft differences.

I_t_al Level of Automation for Different Situations. The analysis of actual versus

ideal levels of automation across different situation attributes, encompassing

questions 56-75 yielded clear and robust group differences. Figures 6a-6e show
the satisfaction measures (actual minus ideal rating) ) for the categories of each of

the situation attributes. It is clear from the figures that in every case in which

there was a negative bar (indicating a maximum available level of automation

that was less than ideal), pilots of the Boeing 747-400 responded more negatively

than did the other two groups. These trends were confirmed by conducting an
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analysis of variance for each situation attribute with aircraft as a between-
subjects variable and category and judgment (actual, ideal) as within-subjects

variables. In all but one case (Q72-74), a significant three-way interaction was

found, confirming that for those categories that were rated as not ideal, Boeing

pilots tended to perceive their available level of automation as being farther
below the ideal than did the others.
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The details of these interactions are:

Q56-58, (see Figure 6a). The closer the situation is to an emergency, the more

pilots, especially Boeing pilots, could use a higher level of automation,
F(4,216)=5.272, p<.0005.

Q59-66, (see Figure 6b). A higher level of automation is desired, especially by

Boeing pilots, at the beginning (pre-flight, taxi) and very end of the flight, (taxi &
park, but not landing), F(14, 756)=2.366, p<.004.

Q67-71 (see Figure 6c). A higher level of automation would be helpful for

communication, system management, and task management, especially for
Boeing pilots, F(8,432)=2.369, p<.02.

Q72-74 (see Figure 6d). This question failed to show a three-way interaction.

However, a significant two-way interaction, between aircraft and judgment
(actual, ideal) confirmed that Boeing pilots rated the maximum available level of

automation further below the ideal than the others for cognitive tasks in general,
F(2,108)=8.913, p<.0003.

Q75-77 (see Figure 6e). The higher the workload, the more pilots, especially in

the Boeing group, feel the need for a higher level of automation F(4,216)=2.621,
p<04.

To be sure that these group differences in satisfaction with automation levels

were not an artifact of certain uncontrolled variables, a reanalysis of the data was
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carried out using a subset of the data. To eliminate the confounding factors of

seat and age, only the data from the Boeing and Airbus First Officers was carried

out (N=23 per group). (A similar analysis for Captains was not possible because
of insufficient numbers in the Boeing sample, see Table 2). The results of the

First Officer analysis supported the results obtained for the larger sample. Three

out of the four three-way interactions that had been significant were still

significant (p<.02); the one that did not reach significance (Q56-58) showed a

trend in the right direction. In addition the two-way interaction in Q72-74

remained significant (p<.002). One possible explanation of the consistently larger

negative gaps in the available minus ideal level of automation ratings for the

Boeing pilots is the lower available level of automation reported by these pilots.

Amount of Automation.. Ratings of the amount of automation in their current

aircraft (Q81-85a) for the three pilot groups are shown in Figure 7a. It is clear

from the figure that the Boeing pilots felt they had lower amounts of automation,

than did the other pilots. This difference was most pronounced for protective

automation, where A-320 pilots reported the most automation and 747-400 pilots

reported the least. The results reinforce the original assumption that the Boeing
747-400 is less automated than the other two aircraft and suggest that the Airbus

A-320 is more automated than the MD-11 at least in the area of protective

automation.

An analysis of variance with aircraft type as a between-subjects variable and

automation type as a within-subjects variable supported these trends by showing

a significant main effect of aircraft group, F(2,108) =11.31, p<.0001, a significant
main effect of automation type, F(4,432)=62.44, p<.0001, and a significant

interaction between aircraft group and automation type, F(8,432)--4.038, p<.0001.

A Tukey test revealed no significant differences between groups for control and

systems automation. For information and decision automation, 747-400 pilot

ratings differed significantly from those of MD-11 pilots (p<.05) and marginally

significantly (p<.10) from those of A-320 pilots. All three aircraft groups differed

significantly from each other in the perceived amount of protective automation

(p<.05).

Ratings of the ideal amount with respect to the current amount (Q81-85b) are

shown in Figure 7b. It is evident from the figure that Boeing pilots expressed a

greater desire for more automation than did the other two groups, especially in

the categories of systems, information, and decision automation.

An analysis of variance confirmed these trends by showing a marginally

significant main effect of aircraft type (F, 2,108)=2.777, p<.10, a significant main
effect of automation type (F4,432)=8.644, p<.0001, and a significant interaction

between aircraft and automation type, F(8, 432)=2.214, p<.03. A Tukey test

revealed only one significant difference between groups: 747-400 pilots' desire

for more information automation was significantly greater than that of MD-11

pilots (p<.05). In addition, a trend toward greater desire on the part of 747-400

pilots was found for systems automation, where the difference between 747-400
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pilots and MD-11 pilots was marginally significant (p<.10), and for decision
automation, where the difference between 747-400 pilots and A-320 pilots was
marginally significant (p<.10).
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An analysis of variance with data from First Officers only (23 Boeing and 23

Airbus) supported the conclusions about group differences in ratings of the
amount of automation on the current aircraft (part 'a') but not of the desire for a

greater or lesser amount of automation (part 'b'). In part 'a,' the main effects of

aircraft and automation type were significant (p<.0002), as was the interaction

between aircraft and automation type (p<.02). Only the main effect of

automation type was significant (p<.02) in part 'b.'

Phenomenologi'cal Experiences

No group differences were apparent in the ranking of the components in

questions 1-31 on any of the scales.

DISCUSSION

Philosophy

Pilots, as expected, generally endorse human-centered positions about use of

automation. The notable exceptions were the opinion that pilots, and not design,

are the biggest obstacle to flight safety and the opinion among A-320 pilots that

automatic systems (envelope protection) should prevent the aircraft from

exceeding its performance envelope rather than providing alerts and allowing

the pilot to override soft limits. This position among A-320 pilots may be an

indication that pilots' philosophy is influenced to some extent by their training

and aircraftdesign philosophy.

Good/Trustworthy Automation

Pilot rankings of the importance of eleven automation features or attributes were

highly correlated for "good" and for "trustworthy" automation, indicating either

that pilots do not distinguish between good and trustworthy, or that the same

automation attributes are important for both. In both cases, pilots indicated that

they want automation to be dependable, predictable, simple and comprehensible.

It is less important for it to be flexible, error-resistant, accountable, adaptable,

and error-tolerant. The message from pilots to designers seems to be: Don't try

to be fancy, just make sure it I can use it and it works.

Physical & Mental Workload

Pilots' ratings of differences in mental and physical workload between glass and

conventional cockpits were phase dependent, with higher relative workloads in

glass cockpits at either end of the flight than in the middle. Workload was rated

as being much higher than it had been in conventional cockpits during preflight
and similar to how it used to be for taxi and approach. Reductions in workload

with glass cockpits were found for take-off, climb, cruise and landing, where

ratings were lower than for conventional cockpits (rating < 3.0). These results

suggest that efforts to reduce workload during pre-flight, when activities such as

system initialization and data entry must be performed, and during taxi,
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approach, and landing, where the mental workload is as high or higher in glass
cockpits as in conventional cockpits, might be beneficial.

.Levels of Automation: Promise and Concern_

Pilots believe that fully autonomous and shared pilot/automation performance

dearly have greater benefit than unassisted performance. The fully autonomous

level has more benefit than the shared performance level for workload reduction,

providing more precise data, and increased airline cost effectiveness, while the

shared level has more benefit than the fully autonomous for keeping pilots
involved and informed, and improving their performance and situation

awareness. However, both automation levels have greater disadvantages or

concerns than unassisted performance. Pilots had greater concerns with the fully
autonomous level than with the shared performance level. This suggests overall

that the shared performance level, which is advocated by the human-centered

approach, holds the most promise without the accompanying concerns.

Ideal Level of Automation for Different Situations

As expected, pilots' perception of current and ideal levels of automation depend
on important aspects or attributes of the situation in which it is used. There were

several situation categories for which pilots would ideally use a higher level of

automation than was available on their current aircraft. These situations

included: Pre-flight and taxi phases of flight; communication, systems

management and task management functions; information processing tasks
concerned with planning and responding; and high workload conditions. The

design implication is for higher levels of automation in these areas. There were

other situations where pilots would use a lower level of automation than is

available. These situations included: normal flight; climb, cruise, descent and

landing phases of flight; and flight control functions. The design implication is

that in certain cases lower levels of automation should be available and

operationally sanctioned even if higher levels exist. It should be noted that

current aircraft do make lower levels of automation available for these situations.

Amount of Automation

Pilots generally want more of each of the five types of automation that were

described. MD-11 and A-320 pilots described their aircraft as having more

automation in each category than did the B747-400 pilots. The only difference

between the MD-11 and A-320 groups was that A-320 pilots rated their aircraft as

higher in amount of protective automation. A-320 and MD-11 pilots felt that the

ideal amount of automation was closer to what they had than did B747-400 pilots
(although, caution must be taken in interpretation of the analyses of aircraft

differences because of the previously described biases in the demographics of thegroups).
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Phenomenological Experiences

Automation components on current aircraft vary widely on the various

dimensions that were explored in terms of obtrusiveness, workload, situation

awareness, predictability, and sense of attending to and performing an

underlying function versus managing the automation. As expected, components

requiring significant input or monitoring, such as the flight management

computer and ACARS are more obtrusive, workload intensive, and result in the
sense of managing the automation, than fairly autonomous systems such as

automatic ground spoilers and automatic rudders. Interestingly, the autoland

system looks more similar in profile to the flight management computer than to
the automatic rudder. The results of these questions indicate that many

automated systems provide increased situation awareness without a workload

penalty. The penalty in obtrusiveness, workload, and the sense of managing the
automation that occurs for some components requiring significant pilot-

component interaction highlights the importance of making pilot interfaces to
these devices as intuitive and simple as possible.

Aircraft Difference_

There was much evidence that the A-320, MD-11 and B747-400 differ in the level

and amount of automation they possess. Generally, pilots indicate they are

satisfied with existing automation, and welcome more, particularly for those

situations in which they are not provided with much automated assistance

currently. There is definitely no indication that there is an "over-automation"

problem with any of the three aircraft types, though generally pilots' philosophy
seems to indicate they would be more comfortable with a shared pilot-

automation performance level than a fully autonomous level of automation.

Pilots' philosophy seemed generally consistent across groups of pilots flying

different aircraft types, with the notable exception that A-320 pilots prefer hard

limits for envelope protection and MD-11 and B747-400 pilots prefer soft limits.

CONCLUSION

The pilots we have surveyed have presented an interesting portrait of the value

of existing automation and the directions that they wish to see flight deck design

take in the next generation of aircraft. They are appreciative of the automation in

current generation glass cockpits and claim to use it whenever it is appropriate.

They want their automation to be simple and reliable and to produce predictable

results. Not only are these features of automation equated with trustworthy

automation, but when the trade-offs are between flexible and adaptable vs.

simple and reliable, they still opt for simplicity. Furthermore, in response to

questions about the extent to which they felt in control of the aircraft vs.

controlling the automation itself, they revealed that simple and reliable is, in

some ways, related to how little attention they need to pay to it. The results also

identify the kinds of systems in use today that provide this kind of reliability.
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Although we began this survey with the objective of trying to understand the

contrast between human-centered and full automation, we come away from it
with a slightly different perspective. To be against human-centered automation

is to be against apple pie. The issues instead are to understand, from the pilots'
point of view, how far they want to go in introducing automation and what

features need to be present to maintain situation awareness, to assure human

control of the integrity of flight and to promote safety and airline cost-

effectiveness. The answer provided in these surveys is that the greatest promise

for further gains is obtained in moving from manual systems to shared systems,
as contrasted with moving from shared control to autonomous control.

Situation awareness, in the pilots' opinions, is supported by the variety of
sophisticated navigation, planning and system status displays that are in use

today and they report that these are among the most frequently used aspects of

automation. The majority of pilots surveyed felt that the biggest needs for

additional automation were to further alleviate the mental workload demands

imposed on them in time-constrained decision making situations. Although
there were differences of opinion among the pilot populations that had

experience in different aircraft, the similarities were much greater than the

differences. In the aggregate they indicated the desire for more, and higher

levels of, automation. When automation level desires were sorted by situation

aspects such as flight phase, and mission function, those aspects which posed the

greatest mental workload demands were the ones that were highlighted for
higher levels of automation.

There is an irony and a challenge in the implications of these two views. On the

one hand they would like new automation to be simple and reliable, but they

need it to support the most complex part of the job--the cognitively demandingor busy situations.

Finally, a word should be said about the value of this survey from a theoretical

point of view. In addition to clarifying pilot preferences for future design efforts,

the survey gave a boost to efforts by researchers to develop a scientific basis for a

design philosophy. The survey results should increase confidence that the basic

concepts and distinctions, or the building blocks that will be needed, are starting
to be put into place. For example, user support for the notion of a human-

centered philosophy (Billings, 1991; Norman & Orlady, 1989; Rouse, Geddes, &

Curry, I987; Wiener, 1989) was confirmed by the results of the study. Pilots
endorsed the philosophy in the sense that they indicated their belief in the need

for the pilot to remain in charge, the impossibility of foreseeing all procedural

requirements, and the desirability of automation that advises rather than
commands.

The notion of different levels of automation (Billings, 1991; Regal & Braune,

1992), while just touched upon in the present survey and in need of further

refinement, nevertheless was supported by the clear differentiation of
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advantages and disadvantages for the levels examined. The next step would be
to explore in a similar way a more sophisticated multidimensional scheme for
describing levels of automation. Riley's (1989) characterization of different levels

in terms of degree of machine intelligence and authority would be a good

candidate.

Related to the notion of levels is the idea that the ideal level of automation will

depend on the situation, defined in terms of its normalcy or non-normalcy, the

flight phase, the functions that need to be carried out, the specific tasks that need

to be accomplished and the cognitive resources required (Deutsch, Pew, Rogers,

& Tenney, 1994). The results of pilot assessment of ideal levels under variations

of these circumstances supported this taxonomy of situations and situation

requirements. The next step would be to examine combinations of these
attributes, for example, the ideal level of automation for decision making under

emergency conditions in the landing phase.

The idea of creating a taxonomy of automation experiences was supported by

the results of the component ratings. The scheme that emerged from the data

was the following. Pilots seem to categorize their experiences along three

dimensions. The first is the way in which they perceive the automation itself

(e.g., predictable, unobtrusive)..The second is the way in which the automation
modifies their task (e.g., improved situation awareness, lower workload). The

third is how they perceive the task (e.g., controlling vs. managing, attending to

flight vs. automation). The latter category of interaction variables is a concept
that has been discussed often in the literature (Holinagel, 1991; Wiener, 1989), but

now has a stronger empirical basis.

In short, ideas that were culled from hours of immersion in the literature, honed

by the rigors of questionnaire production, digested by pilots, and subjected to the

vagaries of statistical analysis, proved to be remarkably robust.
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Pilot Background Questionnaire

1. General Information

Full Name:

Address:

Fwst. Middle, L,st

Street mad Number. ct P.O. Box

City. SUae. Zip Code. _1 Country (if not USA)

Home Phone: (. .)
Area Code Number

Age

Work Phone: C----)
Area Code Number

2. Current Position

Airline:

Seat:
Capla_ First Of Iicer, Engine, etc.

Airplane(s): 1.
2.

No. of years

No. of years

No. of years

No. of years

3. Past Experience

Years Flying Commercial (approximate):

Years Flying Military (approximate):

Total Hours Flying (approximate):

Total Hours Flying as Pilot-in-Command (approximate):

Years of formal education: (e.g. high school graduate = 12)

Please list the aircraft on which you have experience, beginning with that currently flown. Check

the appropriate boxes under hours in type and simulator hours to indicate the number of hours in

each. Check the I/CA column if you are/were an instructor (I) or check airman (CA) on an

aircrat_. Check the last column for any aircrat_ for which you are currently type rated.

Aircraft Type Hours in Type Simulator Hours I/CA Currently

_:_,__.r_'_'_i/_: < 300 300-I000 > 1000'): :_" " :2'"_',:':
!__'_'.:i'.-'li 0 < 50 > 50 Type Rated?
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Survey of Pilots of Advanced Automation Aircraft on Philosophy
Issues Related to Design and Use of Flight Deck Automation

NASA Langley Research Center

Section 1

This section deals with your experiences with particular automation components. In answering these

questions, please answer winumly for the aircraft you currently fly. If your aircraft does not have a particular
automation component, then leave the question blank. Most of the labeling of automation components is based on
Boeing terminology. If you call the component by another name, please write that label on the questionnaire. If you
are not sure what component we are trying to identify, please contact one of the researchers at the numbers provided
on the cover sheet.

lqe,ms¢ rio e,w._hof the aulommion components on the scales indicated. The lahels at the cads of each scale

describe the end points of the scale. The midpoint (3) _nts a neuu_l rating. For example, for the f'ust item, if
your attenlioa in flying an aircraft with automatic braking were equally focused on the flight and on the automation,
you would circle 3. If your attention were slightly more focused on the automation than it was on the flight, you
would circle 4. When completing statements (b) and (f), which ask for relative information (e.g., higher or lower,
shallower or deeper), please answer in relation to the case in which you do not have or use that automation

component.

1. When I use automatic braking:

(a) My attention is focused on the

Co) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use
of this component is appropriate, I use it

flight 1 2 3 4 5 automation

shallower 1 2 3 4 5 deep_

unobtrusive 1 2 3 4 5 distracting

controlling 1 2 3 4 5 managing the
the aircraft automation

difficulty 1 2 3 4 5 ease

lower 1 2 3 4 5 higher

never 1 2 3 4 5 always
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2. When I use the automatic engine start:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(0 My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

engine

shallower

unolmusive

controlling
the engine

difficulty

lower

never

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 distracting

1 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

3. When I use hydraulic amplification of control inputs:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I cau predict the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

4. When I use a flight director:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

flight

shallower

unolmusive

controlling
the au'craft

difficulty

lower

never

flight

shallower

unobu_sive

controlling
the aircraft

difficulty

lower

never

1 2 3 4 5 automal/on

1 2 3 4 5 deeper

1 2 3 4 5 disli'acting

1 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 dism_ting

1 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always
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5. When I use stability augmentation systems:

(a) My attention is focused on the

(b) My understanding of the big picture is

flight

(c) The automation is

(d) I feed as though I am

(e) i cau pred_t the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use
of this component is _, I use it

6. When I use a primary flight display:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can wedict the behavior of the
automation with

shalJower

unobin_sive

controlling
the aircraft

difficulty

lower

never

flight

shallower

unoblrusive

controlling
the aircraft

difficulty

(f) My overall workload is lower

(g) In the flight phase or mode where use never
of this component is apwowiate, I use it

7. When I use the autopilot to control HDG, SPD, or ALT:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

flight

shallower

unoMrusive

controlling
the aircraft

difficulty

(f) My overall workload is
lower

never
(g) In the flight phase or mode where use

of this component is appropriate, I use it

1 2 3 4 5 automation

1 2 3 4 5 deeper

I 2 3 4 5 distra_in8

I 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 distngting

1 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 dislr_ting

1 2 3 4 5 mauagingthe
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always
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$. When I use the autopilot for pitch, roll, and yaw control:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(0 My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

flight

shallower

unolmusive

controlling
the aircraft

difficulty

lower

never

9. When I use the autopilot to control vertical or horizontal
navigation paths:

flight

shallower

unobuusive

controlling
the aircraft

difficulty

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(0 My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

I 2 34 5 automation

1234 5 deet_

1234 5 distracting

1234 5 managinglhe
automation

1234 5ease

1234 5 higher

1 234 5 always

1234 5 au_tim

12345dee_

1234 5 distrac_

1234 5 managmg_
automation

12345_

1234 5 higher

l 234 5 always

10. When I use the autothrottle:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
aulomation with

(f) My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

flight

shallower

unobtrusive

controlling
the aircraft

difficulty

lower

never

1234 5 au_tim

1234 5 deeper

1234 5 dismtc_

1234 5 managing_
au_tim

12345_

12345bi_

1234 5 always
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11. When I use automatic landing:

(a) My attention is focused on the

Co) My tmderslmgling of the big picture is

(c) The automation is

(d) I feel as thongh I am

(e) I c_n wed_t the behaviof °f the
automation with

(f) My overall workload is lower

(g) In the flight phase of mode where use never
of this component is appmwiate, I use it

12. When I use speed envelope limiting:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) i can pred_t the behavior of the
automation with

(f) My overall workload is lower

(g) In the flight phase of mode where use never
of this component is appropriate, I use it

flight

shallower

_ive

controlling
the aircraft

difficulty

flight

shallower

unobtrusive

controlling
the mrcraft

difficulty

13. When I use fly-by.wire engine and/or flight controls:

(a) My attention is focused on the

Co) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

flight

shallower

unobtrusive

controlling
the aircraft

(e) I can predict the behavior of the
auu3mation with

(f) My overall workload is

(g) In the flight phase of mode where use
of this component is appropriate, I use it

difficulty

lower

never

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 distracting

1 2 3 4 5 mana_ngthe
automation

I 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 disncting

1 2 3 4 5 managing the
automation

1 234Seine

1 2 3 4 5 higher

1 2 3 4 5 always

1 2 3 4 5 automation

! 2 3 4 5 cksq_

1 2 3 4 5 distr_ting

I 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

I 2 3 4 5 always
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14. When I use flap limiting (e.g., auto retraction feature):

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(c) I can pred/ct the behavior of the
automation with

(0 My overall workload is

(8) In the flight phase or mode where use
of this component is appropriate, I use it

flight

shallower

unobtrusive

controlling
the aircraft

difficulty

lower

never

1 2 3 4 5 au_fim

1 2 3 4 5 deeper

1 2 3 4 5 disu'aclin8

1 2 3 4 5 mauaging_
autonmfion

12345_

1 2 3 4 5 higher

1 2 3 4 5 always

15. When I use an auto ground spoiler:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as thongh I am

(e) I can predict the behavior of the
automation with

(f) My overall workload is

(8) In the flight phase or mode where use

of this component is appropriate, I use it

flight

shallower

unobtrusive

controlling
the aircraft

difficulty

lower

never

1 2 3 4 5 automation

1 2 34 5 deeper

1 2 3 4 5 distracting

1 2 3 4 5 mauagingthe
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

16. When I use automatic compensation for asymmetrical thrust (e.g., automatic rudder):

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(0 My overall workload is

(8) In the flight phase or mode where use
of this component is appropriate, I use it

flight

shallower

unobtrusive

controlling
the aircraft

difficulty

1 2 3 4 5 _tion

1 2 3 4 5 deel_

1 2 3 4 5 diswac_

1 2 3 4 5 m mmgmg_
_lomation

12345_

lower

never

1 2 3 4 5 higher

1 2 3 4 5 always
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17. When I use the FMC for automated flight planning (e.g., planning of route, waypoints,

etc.):

(a) My attention is focused on ;he

Co) My underslanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can pa_di_ the hehavior of the
automation with

(0 My overall woddoad is

(g) In the flight phase or mode where use
of this component is appropriate, I use it

flight

shallower

unobtrusive

navigating

difficulty

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 distracting

1 2 3 4 5 managing the
automation

1 2 3 4 5ea_

1 2 3 4 5 higher

1 2 3 4 5 always

lg. When I use the FMC for automated performance management:

(a)My attentionisfocusedon the

(b)My undexstandingofthebigpictureis

(c)The automationis

(d)IfeelasthoughIam

(e) I can predictthebehavior of the
automation with

(f) My overall workload is

(g)Intheflightphaseormode whereuse
ofthiscomponentisappropriate,Iuseit

flight

shallower

unobtrusive

navigating

difficulty

1 2 3 4 5 automation

I 2 3 4 5 deeper

1 2 3 4 5 distracting

I 2 3 4 5 managingthe
automation

I 2 3 4 5ease

lower

never

1 2 3 4 5 higher

I 2 3 4 5 always

19. When I use the FMC for automated flight guidance (e.g., LNAV, VNAV):

(a) My attention is focused on the

Co) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I cau wedict the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use
of this component is appropriate, I use it

flight

shallower

unobtrusive

navigating

difficulty

1 2 3 4 5 automation

1 2 3 4 5 deeper

I 2 3 4 5_

1 2 3 4 5 managing the
automation

1 2 3 4 5ease

[ower

never

1 2 3 4 5 higher

1 2 3 4 5 always
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20. When I ux a TCAS traffic display:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automat/on with

(f) My overall woAload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

21. When I use the navigation display:

(a) My attention is focused on file

(b) My understanding of the big picture is

(c) Tic automation is

(d) I feel as though I am

(e) I can Predict the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use

of this component is appropriate, I use it

flight

shallower

unobtrusive

navigating

difficulty

lower

never

flight

shallower

unobu_sive

navigating

difficulty

lower

never

1 2 3 4 5 _tonmfion

1 2 3 4 5 deeper

1 2 3 4 5 distracling

I 2 3 4 5 managing_
auction

12345_

1 2 3 4 5 highex

1 2 3 4 5 always

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 distracting

1 2 3 4 5 managing the
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

22. When I use the inertial reference system:

(a) My attention is focused on the

(b) My understanding of the big pictm'e is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(0 My overall workload is

(g) In the flight phase or mode where use
of this component is appropriate, I use it

flight

shallower

unobtrusive

navigating

difficulty

lower

never

I 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 disuacfing

1 2 3 4 5 mauagingthe
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always
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23. When I use auto radio tuning:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I cau wedict the behavior °f the
autonmfion with

(f) My overall workload is

(g) In the flight phase _ mode whereuse
of this component is appropriate, I use it

flight

shallower

mmbc_ive

commum'cating

difficulty

1 2 3 4 5 autommion

I 2 3 4 5 deeper

I 2 3 4 5 disuacting

1 2 3 4 5 managingthe
automation

1 2 3 4 5csse

1 2 3 4 5 higher

1 2 3 4 5 always

24. When I use ACARS:

(a) My attention is focused on the

Co) My understanding of the big picture is

(c) The automation is

(d) I feel as thou8hlam

(e) IcanIxedictthebehavi°r°fthe
automation with

(f) My overall workload is

(g) In the flight phase or mode where use
of this component is appropriate, I use it

25. When I use sub-systems schematics:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the behavior of the
automation with

(f) My overall workload is

(g) In the flight phase or mode where use
of this component is appropriate, I use it

flight

shallower

unobuusive

communicating

difficulty

night

shallower

unobtrusive

managing
the sub-systems

difficulty

lower

never

1 2 3 4 5 automation

1 2 3 4 5 deel_

1 2 3 4 5 disuactin8

1 2 3 4 5 nmnagingthe
autmnafion

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always

1 2 3 4 5 automation

1 2 3 4 5 deeper

1 2 3 4 5 distracting

1 2 3 4 5 mauagingthe
automation

1 2 3 4 5ease

1 2 3 4 5 higher

1 2 3 4 5 always
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26.
When I use envelope protection with active flight control intervention:

(a) My attention is focused on the

(b) My understanding of the big picture is

(c) The automation is

(d) I feel as though I am

(e) I can predict the hehavior of the
automation with

flight 1 2 3 4 5 automation

shallower ! 2 3 4 5 deqmr

unobtrusive 1 2 3 4 5 distracting

controlling 1 2 3 4 5 managing the
the aircraft automation

difficulty 1 2 3 4 5 ease

(0 My overall workload is lower

(g) In the flight phase or mode where use never
of this component is appropriate, I use it

1 2

1 2

34 5 higher

3 4 5 always

Please complete the following statements concerning alerting systems.

27.
When a master caution and warning alert occurs:

(a) The alert gets my attention eventually

(b) I trust that lhe alert signals a real event never

(c) I know exactly what the problem is eventually

(d) My response to the alert requires thought

(e) Returning to interrupted tasks after difficult
the alert is

(0 On my current aircraft, these alerts never
occur

1234 5 immediately

123 4 5 always

123 4 5 immediately

12 3 4 5 is automatic

12345easy

123 4 5 very often

8. When the GPWS warning occurs:

(a) The alert gets my attention

(b) I trust that the alert signals a real event

(c) I know exacdy what the problem is

(d) My response to the alert

(e) Returning to interrupted tasks after
the alert is

(0 On my current aircraft, these alerts
OCCur

eventually

never

eventually

requires thought

difficult

never

123 4 5 immediately

123 4 5 always

1234 5 immediately

12 34 5 is automatic

1234 5easy

123 4 5 very often
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29. When a configuration warning occurs:

(a) The alert gets my attention

(b) I trust that the alert signals a re_ event

(c) I know exactly what the problem is

(d) My response to the alert

(e) Returning to interrupted tasks af_
the alert is

(f) On my current aircraft, these alerts never
occur

30. When a TCAS traffic advisory occurs:

(a) The alert gets my attention

(b) I trust that the alert signab a real event

(c) I know exactly what the problem is

(d) My response to the alert

(e) Returning to interrupted tasks after
the alert is

(f) On my current aircraft, these alerts never
occur

31. When a TCAS resolution advisory occurs:

eventually

licvef

eventually

requires thought

difficult

eventually

ncver

eventually

requires thought

difficult

(a) The alert gets my attention eventually

(b) I trust that the alert signals a real event never

(c) I know exacdy what the woblem is eventually

(d) My response to the alert requires thought

(e) Returning to interrupted tasks after difficult
the alert is

(f) On my current aircraft, these alerts never
occur

1 2 3 4 5 immediately

1 2 3 4 5 always

1 2 3 4 5 immediately

1 2 3 4 5 is automatic

1 2 34 5 easy

1 2 3 4 5 very often

1 2 3 4 5 immediately

1 2 3 4 5 always

1 2 3 4 5 immediately

1 2 3 4 5 is automatic

1 2 34 5 easy

1 2 3 4 5 very often

1 2 3 4 5 immediately

1 2 3 4 5 always

1 2 3 4 5 immediately

1 2 3 4 5 is automatic

1 234 5easy

1 2 3 4 5 very often
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Section 2

This section addresses general automation philosophy issues, including training, pilot and automation roles
and tasks, decision aids, and automation as it relates to pilot workload, pilot trust, and aircraft safety.

Pleasecompleteeach statementby circlingthenumber on thescalethatrepresentsthedegreetowhich one

or the other phrase is consistent with your opinions and beliefs. For example, for the In'st statement, if you
believe strongly lhat initial emphasis should be placed on learning the basic airplane before introducing the
automation, you would circle "5;" if yon believe that the automation should be int_xluced lust, but only
have a slight pcefev_nce for this position, you would circle "2."

32. Initial emphasis in training should be placed on learning about:

lhe amomati_ before the "basic airplane" before
introducing the introducing the
"basic airplane" automation

I 2 3 4 5

33. I would like to see the introduction of more automation that:

assists the pilot in
problem solving

automatically solves
problems

I 2 3 4 5

34. I would like to see the introduction of more automation that:

35.

6.

evaluates and advises the

flight crew on alterna-
tive plans of action

automatically executes
alternative plans of

action

1 2 3 4 5

It is likely that situational information about AJC systems given by automation
in the future:

willalways require
confmnation

can always be accepted
as fact

1 2 3 4 5

It is likely that procedural information, response recommendations and commands
concerning A/C systems given by automation in the future:

will always require
confirmation

can always be accepted
as fact

1 2 3 4 5

37. It is likely that the pilot in the future will:

not be responsible for
flying the aircraft

still be responsible for
flying the aircraft

I 2 3 4 5
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M. In the future:

there will still be system
failures that require devi-

ations from standard
;rocedores

we can expect that every
system failure will have
ap  bed 

to follow

1 2 3 4 5

39. The biggest obstacle to total flight safety is:

40.

system design pilot performance

1 2 3 4 5

In pilot training in the future, principles of navigation and aviation are likely to
receive:

less emphasis just as much emphasis

I 2 3 4 5

41. In most cases, an automatic system should:

prevent the aircraft from
exceeding its perfonn-

alw, e envek_)e

warn the crew of envelope
exceedence, but not restrict

pilots' control

1 2 3 4 5

42. Autoflight mode annunciation should be organized and displayed by:

43.

what is controlling(auto-
throttle, roll, pitch)

what is being controlled (speed,
lateral path, yen. path)

1 2 3 4 5

On my current aircraft, automatic transitions between different autoflight modes
are usually:

hard to predict easy to predict

1 2 3 4 5

44. I think synthetic speech for providing information to the pilot should be:

used only for tlme-critical
warnings (e.g., "pull-up,"

windshear')

used to convey a variety of messages
(e.g., ATe datalink, FMC,

ACARS, etc.)

1 2 3 4 5

45. I think the overall amount of information available on my aircraft is:

not enough too much

1 2 3 4 5
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The following questions conce_ decision aids--automation that provides inform_ion, advice, and

recommendations about possible al_natives. Examples of decision aids would be systems that help
diagnosea systemsfault,selectan alternateairportordeterminetheoptimalcostindexforthecurrentflight
conditions.

46. Decision aids should emphasize:

situation response
information information

I 2 3 4 5

47. Decision aids should provide the flight crew with:

one a list of
alternative alternatives

I 2 3 4 5

48. Decision aids should provide the flight crew with:

49.

0.

recommendations commands

I 2 3 4 5

Sometimes decision aids weigh evidence and make a probabilistic assessment
(e.ll., a physician's diagnostic aid might determine that your headache, fever, and
|eneral malaise has an g0% chance of being due to the flu). A decision aid
should only provide information to the pilot if it is certain that it is 100%
correct.

disagree agree

1 2 3 4 5

If a decision aid tells me the probability of the choice being correct, I will accept
information that has as low as a % probability of being correct.
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51. Automation can be considered good if it enhances safe, economical operation of
the aircraft. There are many attributes of automation which designers believe
make it good. Please rank the importance of the 11 attributes listed below for
good automation. For example, if accountable were the most important quality
for good automation, you would put a 1 in the space next to it, and if adaptable
were tin least important quality for good automation, you would put an 11 in the

space next to it, and so on.

Attribute Rank

Accountable means the automation informs the

pilot of its actions and is able to explain them.

Adotab/¢ means that displays, control devices, etc.,
are re-Wogmmmable within a wide range of pilot
p_ermces and need_

Comprokemsibl¢ means that one can figure out
what the automation is doing and what needs
to be done to opexate it

Dt_m_tb/¢ means that the automation does what
it is supposed to do and nevex does what it is not
 ppo n to do.

Error.resistant means that the automation keeps

pilots from c_mmitting exrovs(e.g., disallowing
inputs when automation can detect entry is wrong).

Error4o/traMt means that the automation can
detect and reduce the effects of error, given that
some errors will inevitably occur.

F/ex/b_ means that an appropriate range of modes
and levels are available to the operator (e.g., from
manual c.ont_rolto autonomous operation).

l_form_lv¢ means that the automation imparts
knowledge to the pilot (e.g., information about the
airplane, automation, problems, operations, etc.)

Predictable means that the automation behaves
as expected (i.e., it is clear what it is going to do ).

Shapie means that it is easy to understand and use
(i.e., it is straightforward to learn and operate iO.

Ssubord/Mt¢ means the automation never assumes
command, except in we-defined situations. When
it does assume command, it can be countermanded.
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52. Automation can be consideredtrustworthy if pilots accept it, use it, and have faith
in its operation or output. There are many automation attributes which may help
it be trustworthy. Please rank the importance of the 11 attributes listed below
for trustworthy automation. For example, if accouutabl¢ were the most
important quality for trustworthy automation, you would put a 1 in the space
next to it, and if adaptable were the least important quality for trustworthy
automation, you would put an 11 in the space next to it, and so on.

Attribute Rank

Aceoumtable means rite automation informs the

pilot of its actions and is able to explain them.

Adapta_ means that displays, control devices, etc.,
are re-programmable within a wide range of pilot
l_eae_,_s and needs.

Comprehensible means that one can figure out
what the automation is doing and what needs
to be done to operate it.

Depttsda/t/t means that the automation does what
it is supposed to do and never does what it is not
supposedto

Error-resLgtaat means that the automation keeps
pilots from committing errors (e.g., disallowing
inputs when automation can detect entry is wrong).

Error-toltrant means that the automation can
detect and reduce the effects of em_, given that
some enm_ will inevitably occur.

F/e_ means that an appropriate range of modes
and leveL5ate available to the operator (e.g., from
manual control to autonomous operation).

lnformatD¢ means that the automation imparts
knowledge to the pilot (e.g., information about the
airplane, automation, problems, operations, etc.)

Predictable means that the automation behaves

as expected (i.e., it is clear what it is going to do ).

S/mp/e means easy to understand and use (i.e., it
is suaightfcrward to learn and operate it).

Su_rdimate means the automation never assumes
command, except in pre-defined situations. When
it does assume command, it can be c_unt_nnand_.
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53. In tbe spaceprovided,pleasedescribean experience that exemplifies automation
that is trustworthy. The experience can be real or imaginary.

54. Now describe an experience that exemplifies untrustworthy automation.
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55.
Other surveys have suggested that pilots believe that advanced automation
cockpits, relative to conventional cockpits, have changed the distribution of
workload over the flight mission. By conventional cockpits, we mean ones
which use mechanical gauges, have no flight management computers, etc. (e.g.,
727's, DC-9's). By advanced automation cockpits, we mean ones that have glass,
computers, etc. (A320's, MD-II's, 747.400's).

Tbc pilot's pkysk_ workload in advanced glass cockpits, relative to that in convenlk)aslcockpits,is:

much aboutthe much

Iowa same higher

Prc-fl/ght I 2 3 4 5

Taxi 1 2 3 4 5

Take.off I 2 3 4 5

Climb 1 2 3 4 5

Cruise 1 2 3 4 5

Appra 1 2 3 4 5

Landing 1 2 3 4 5

The pilot's mental workload in advanced glass cockpits, relative to that in conventionalcockpits, is:

much about the much
lower same higher

Pre-flight 1 2 3 4 5

Taxi 1 2 3 4 5

Take-off 1 2 3 4 5

Climb 1 2 3 4 5

Cruise 1 2 3 4 5

1 2 3 4 5

Landing 1 2 3 4 5
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Section 3

Levels of Automation and Amount of Automation

Questions 56-77 concern levels of automation. By itptl ofau_omatgox, we mean the degree to which
autematim participates in performaace of a task or functim, from unassisted human perfommnce, to

shmed perfmmm_ (pilots perform some activities, automation performs some), to totally mamnated
perf_ (the automation pedmms the task, and the pilot is simply infmmed of the operational state of

the automation).

several of these below. For each _pu , v your view or opinion. The
automation and for each circle the number on the 1-5 scale that best reflects
numbers 2, 3 imd 4 on the scales retaesent shared pilot-automation oi_J alien, with increasing involvement

of the automation.

One way to think about the flight is by normal, non-normal and emergency conditions. Please think about

current and ideal levels of automation for each of these categories.

56. NORMAL FLIGHT (all systems are operating normally, the flight proceeds with m unusual

events or circumstances)

The maximum level of automation available for norma/flight on the aircraft I fly is:

unassisted pilot totally automated

performance performance

1 2 3 4 5

Ideally, the level of automation I would use for Mormal fright is:

unassisted pilot totally autonuued

pe_onna_ performance

I 2 3 4 5

bY. NON-NORMAL FLIGHT (a system failure or abnormal situation exists, but does mot require

diversioa to the nearest airport)

The maximum level of automation available fog non.normal flight on the aircraft I fly is:

unassisted pilot totally automated

performance perfo_m_

1 2 3 4 5

Ideally. the level of automation I would use for mon-morma/flight is:

unassisted pilot totally automated

performance performance

1 2 3 4 5
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511. IN-FLIGHT EMERGENCY (the aircraft must be lamled immediately, at the Jteareat suitableah-pm-t it pebble)

The maximum level of automatkm available for/a-j_/gM taurgencies on the aircraft I fly is:

unassisted pilot totally automated
perfonnan_ perfommw_

1 2 3 4 5

Ideally, the level of automation I would use for in-fliglU emergencies:

unassisted pilot totally automated
pertmnaw_ pertmnanc_

1 2 3 4 5

Another way to think about the flight is by flight phase. Please think about the current and ideal level of
automation for each phase of flight described below.

59. PRE-FLIGHT (all activities until aircraft roll-back)

The maximum level of automation available forpre-flight on the aircraft I fly is:

misted pilot totally automated
petfmmaw_ performance

1 2 3 4 5

Ideally, the level of automation I would use for Iwe-flight is:

unassisted pilot totally automated
performance performance

1 2 3 4 5

TAXI (roll-back to take-off roll)

The maximum level of automation available for taxi on the aircraft I fly is:

unassisted pilot totally automated
perfommw_ performance

1 2 3 4 5

Ideally, the level of automation I would use for taxi is:

unassisted pilot
performance

1 2 3 4

totally automated
performance
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61. TAKE-OFF (take-off roll to 500 ft. altitude)

The maximum level of auto,nation available for take-o.0"on the aircraft I fly is:

unassisted pilot totally automated
p=f ma 

I 2 3 4 5

Ideally, the level of auu_afion I would use for _te-o.O" is:

unassisted pilot totally automaled

p orman 
1 2 3 4 5

62. CLIMB (500 ft. altitude to level off at cruise altitude)

The maximum level of automation available for c//s_ on the aircraft I fly is:

unassisted pilot totally automaled
pe__ performance

1 2 3 4 5

Ideally, the level of automation I would use for c//mb is:

unassisted pilot totally auu_nmw_i
pedonnan_ perfonn_ce

1 2 3 4 5

63. CRUISE (top of climb to top of descen0

The maximum level of automation available for cruise on the aircraft I fly is:

unassisted pilot totally automated
performance performance

1 2 3 4 5

Ideally, the level of automation I would use for cru/$¢ is:

unassisted pilot tolally automated

petf_ performance

I 2 3 4 5
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64, DESCENT (top of descent to 500 ft. altitude)

The maximum level of automation available for descent on the aircraft I fly is:

unassisted pilot totally automated
performance perf 

I 2 3 4 5

Ideally. the level of automation I would use for descem is:

unassisted pilot totally automated
peffonnaw_ performance

1 2 3 4 5

65. LANDING (500 ft. altitude to tara-off' at taxi way)

The maximum level of automation available for/and/rig on the aircraft I fly is:

unassisted pilot totally automated
performance performance

I 2 3 4 5

Ideally, the level of automation I would use for landing is:

unassisted pilot totally automated
perfornmr.e performance

1 2 3 4 5

66. TAXI & PARK (turn-off at taxi way to flight crew deplaning)

The maximum level of automation available for taxi andpark on the aircraft I fly is:

unassisted pilot totally automated
perfmnance performance

I 2 3 4 5

Ideally, the level of automation I would use for taxi andpark is:

unassisted pilot totally automated
performance performance

I 2 3 4 5

71



Another way to think about the flight is by mission function. Please think about the current and ideal level
of automation for each mission function.

67. FLIGHT CONTROL (activities related to controlling the immediate attitude, speed, trajectory,
mad altitude ot the aircraft)

The maximum level of automation available forfl/ght control on the aircraft I fly is:

unassisted pilot totally autonutw_
peffonnan performance

I 2 3 4 5

Ideally,thelevelofautomationIwouldusefor_ightcontrolis:

unassistedpilot totally automated
perf_ performance

I 2 3 4 5

U. NAVIGATION (activities related to planning the flight path d the aircraft in relatiea to ATE
requests, waypoints, destination, etc.)

The maximum level of itat,/gat/otl on the aircraft I fly is:

unassisted pilot
performance

totally automated
performance

1 2 3 4 5

Ideally, the level of automation I would use for navigation is:

misted pilot
perf 

totally automated
perfmnawx

I 2 3 4 5

69. COMMUNICATION (activities related to transferring information among the flight crew, ATC,

dispatch, cabin crew, and the FMC)

The maximum level of automation available for communication on the aircraft I fly is:

unassisted pilot totally automated
performaw.e performance

1 2 3 4 5

Ideally, the level of automation I would use for communication is:

unassistedpilot totally automated
performance performance

1 2 3 4 5
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70. SYSTEMS MANAGEMENT (activities related to managing on-board automated systems,
including fuel, hydraulics, electrical, engines, as well as computer systems such as the FMC,
autopHo¢)

The maximum level of automation available for systems managememt on the aircraft I fly is:

unassisted pilot
perfmnan_

totally automated
performance

1 2 3 4 5

Ideally, the level of automation I would use for systems managemem is:

unassisted pilot
performance

totally automaw.,d
performance

1 2 3 4 5

71. TASK MANAGEMENT (organizing and scheduling tasks to be done during a flight, including
managing required resources)

The maximum level of automation available for task management on the aircraft I fly is:

unassisted pilot
performance

totally automated
performance

I 2 3 4 5

Ideally, the level of automation I would use for task management is:

unassisted pilot
perfonna_

totally automated
performance

1 2 3 4 5

Another way to think about the flight is by human information processing task; taking infonnatkm in,
lXOC_ssin8it, and responding to it. Please think about the current and ideal level of automation for each
information processing task.

72. MONITORING (activities such as scanning, looking, detecting-determining the states and
statas's of the aircraft, systems, etc.)

The maximum level of automation available for mon/tor/ng tasks on the aircraft I fly is:

unassistedp_ot
perf_

totally automated
performance

1 2 3 4 5

Ideally, the level of automation I would use for monitoring tasks is:

unassisted pilot
perf_e

totally automated
performance

1 2 3 4 5
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73. PLANNING (mental activities involving assessing the situation, its consequences, making

decisions, problem solving, etc.)

The maximum level of automation available for p/au/ng tas/u on the aircraft I fly is:

unassistedp_ot
peffmnance

totally automated
performance

1 2 3 4 5

Ideally, the level of automation I would use for p/aan/ng tasks is:

unassisted pilot totally automated
perf_ pe_muaw_

1 2 3 4 5

74. RESPONDING (determining and performing actions that achieve the plans and goals developed

in the planning tasks)

The maximum level of automation for respoad/ng tasks on the aircraft I fly is:

unassisted pilot
performance

totally automated
performance

1 2 3 4 5

Ideally, the level of automation I would use for respo_li_g tasks is:

unassisted pilot totally automated

performance performance

1 2 3 4 5

Another way to think about the flight is by amount of workload invelved. Please think about the current
and ideal level of automation for the different levels of workload described below.

75. HIGH WORKLOAD SITUATIONS (situations in which you are time-stressed and very

busy---not sure if you'll get everything done)

The maximum level of automation available for high workload s/tuat/om on the aircraft I fly is:

unassisted pilot totally automated

performance performance

1 2 3 4 5

Ideally, the level of automation I would use for high workload situatimts is:

unassisted pilot totally automated
pe_fonnaw.e performance

1 2 3 4 5
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76. MEDIUM WORKLOAD SITUATIONS (situations in which you are busy but motoverwhelmed)

The maximum level of automation available for medium workload situatiom
on the aircraft I fly is:

unassisted pilot totally automated
peffornmnce performance

1 2 3 4 5

Ideally, the level of automation I would use for meal/urn workload sttua_ons is:

unassisted pilot totally autonmteA
perfonnaa_ perfonnan_

1 2 3 4 5

77. LOW WORKLOAD SITUATIONS (situations in which there is not much to do--obvions

periods of monotony and inactivity)

The maximum level of automation available for/ow workload situations
on the aircraft I fly is:

unassisted pilot totally automated
perfonnaw_ performance

! 2 3 4 5

Ideally, the level of automation I would use for low workloadsituatlons is:

unassisted pilot totally automated
performance performance

1 2 3 4 5
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Items 78-80 list potential advantages and disadvantages of three differem levels of flight deck automation:
ataamxnotts (Q78), shared (Q79), and unassisted (QS0). Please indicate how you feel about the potential
advantages and disadvantages of each level of automation, as described.

78. Autmmmous operation: automation performs task; pilot may turn on or off, informed of
uuitunction

I believe that automation at this level holds the promise to:

keep me involved

keep me informed

imwove my perfonnan_

improve my situation awareness

alleviate fatigue
reduce woAJoad

wovide more precise data

increase safety
increase airline cost effectiveness

Disagree Agree

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Iam concernedthatautomation at this level could

temperammtal devices

display complexity

losing sight of the raw data

diff_ulty in lmming to operate

data enu'y errors

software engineering etTorS

need for new skills

unforeseen and unintended

negative consequences 1 2 3

workload extremes (high and low) 1 2 3

increase in the number of

alerting signals I 2 3

loss of situation awareness 1 2 3

need to woA amend the automatics

inunusualcircumstances 1 2 3

increasedhead-down time I 2 3

difficulty in recovering from an

automation failure 1 2 3

degradation of pilot skills 1 2 3

difficulty in detecting

system eno_ 1 2 3

relugtance of crew to take over

from automatics 1 2 3

complacency 1 2 3

lead to:

Low High
concern concern

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5

4 5
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79. Shared Pilot/Automation performance: pilot carries part of out task, may utilize advisory
systems; automation carries out part of task, usually at pilot's discretion

I believe that automation at this level holds the promise to:

Disagree Agree
keep me involved 1 2 3 4 5

keep me informed 1 2 3 4 5

improve my Performance 1 2 3 4 5

improve my situation awmeness 1 2 3 4 5

alleviate fatigue 1 2 3 4 5

reduce workload 1 2 3 4 5

provide mote precise data 1 2 3 4 5

increase safety 1 2 3 4 5

increase airline cost effectiveness 1 2 3 4 5

I am ccxw,en_ that automation at this level could lead to:

Low High
concern

¢OIi_erll

temperamental devices 1 2 3 4 5

display complexity 1 2 3 4 5

losing sight of the raw data 1 2 3 4 5

diffgulty in learning to operate 1 2 3 4 5

data entry errors 1 2 3 4 5

software engineering errors 1 2 3 4 5

need for new skills 1 2 3 4 5
unforeseen and unintended

negative consequences 1 2 3 4 5

workload extremes (high and low) 1 2 3 4 5
increase in the number of

alertingsignals I 2 3 4 5

loss of situation awareness 1 2 3 4 5
need to wock around the automatics

in unusual circumstances 1 2 3 4 5

increased head-down time 1 2 3 4 5
difficulty in recovering from an

automation failure 1 2 3 4 5

degradationof pilotskills 1 2 3 4 5
difficulty in detecting

system errors 1 2 3 4 5
reluctance of crew to take over

from automatics 1 2 3 4 5

complacency 1 2 3 4 5
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gO. Umuni/_ Pilot performauce: pilot carries out task; unaided decision-mtkiall; ._izes rtw dirt

! believe that automation at this level hotds the promise to:

Disagree

keep me involved l 2

keep me informed l 2

improve my pez-f_ 1 2

imixove my situation awareness 1 2
anev_e fat_ue l 2

reduce weddoad 1 2

provide more precise data 1 2
increase safety 1 2

increa_ airline cost effectiveness 1 2

Agree

3 4 5
3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

3 4 5

3 4 5
3 4 5

I am concerned that automation at this level could lead to:

tempermnental devices

display complexity
losing sight of the raw data

difficulty in learning to operate

dsta entry eerets
software engineering en_rs

need for new skills
unforeseen and unintended

negmive consequences
workload cx_ (high and low)

incrcasc in the number of

alerting signals

loss of situation awareness
need to wm'k mound the automatics

in unusual circumstances
increa_ head-down time

difficulty in recovering from an

mum_on failure

degradation of pilot skills

difficulty in detecting

system errors
reluctance of c:ew to take over

from automatics

complacency

Low High
concerB

conceru

1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

I 2 3 4 5
I 2 3 4 5

I 2 3 4 5

I 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5

I 2 3 4 5

l 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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llems81--85concerntheamount ofdiffea'enttypesofautomation.By amount ofauto_n, we simply
mean the totalnumber ofautomated systemsor components.

81. AIRCRAFT CONTROL AUTOMATION (automation thatassistsor supplantsa human pilotin

Biding the airplanethrough the maneuvers necessaryforaircraftsafety.)

The amount offlif_ ¢o_m,olautomadon on theaircraftI fly is:

minimal moderate maximal

I 2 3 4 5

The ideal amount offlight control automation inrelationtothat on the aircraft I fly, is:

less automation current level more automation

1 2 3 4 5

82. SYSTEMS CONTROL AUTOMATION (automation that assists or supplants a human pilot in
controlling system modes and configurations, display modes and formats, information, etc.)

The amount of systems control automation on the aircraft I fly is:

minimal moderate maximal

1 2 3 4 5

The ideal amount of systems control automation in relation to that on the aircraft I fly, is

less automation current level more automation

1 2 3 4 5

83. INFORMATION AUTOMATION (automation that informs the pilots about the aircraft and

systemsstates,operations, procedures, regulations, and location of the aircraft and relevant
entities in the environment).

The amount of information automation on the aircraft I fly is:

minimal moderate maximal

I 2 3 4 5

The ideal amount of/nformat/on automat/on in relation to that on the aircraft I fly, is:

less automation currentlevel more automation

1 2 3 4 5
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84. DECISION AUTOMATION (automtion that aids the pilot in selecting alternatives, making
ckok_).

The amount of deckt/oa automattom on the aircraft I fly is:

minimal moderate maximal

I 2 3 4 5

The ideal amount of dec/s/ox amUmatioa relation to that on the aircraft I fly, is :

less autonmtion current level more automation

1 2 3 4 5

85. PROTECTIVE AUTOMATION (automation that physically prevents the pilot from taking
mutate actions and automatically carries out actions required for safety if the pilot fails to act in
• fim_ly manner).

The amount of protective automatiom on the aircraft I fly is:

minimal moderate maximal

1 2 3 4 5

The ideal amount of protective automation in relation to that on the aircraft I fly, is:

less automation current level more automation

1 2 3 4 5

86. I think

aircraft because

is the bestautomated feature on my

87. ! thiak

aircraft because

is the worst automted feature ou my
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Section 4

NASA is performing research to support development of a Math 2-3, 6000 mile range, 300 passenger
comme_iai aircraft that is economically viable and environmentally sound. Please answe_ the following

questions specifically related to such a high speed commercial transpo_ _.

It is possible the HSCT will have limited or no forward windows so the cost and weight required to "droop"
the nose as is done in the Concorde can be saved. Instead, visual information may be provided by sensors,
by computeg-based object and terrain data bases validated by GPS positioning, or by both. The inuzge you
see may be graphically enhmce_ to look like an unobstructed, high fidelity, day time view of the outside
forward-looking _ne, possibly augmented with primary flight information.

Assuming itcau be shown that pedormance with a sonscr _ computer data base genemed visual scene is
satisfactot_ and reliable, please indicate your level of agreement with the following statements:

88. Most pilots would feel comfortable landing
forward visual scene from:

imaging sensors

computer-based obstacle and
a_x_ databases

a combination of sensor and

computer-based infocmazion

a commercial aircraft that supplied a

disagree agree

I 2 3 4 5

I 2 3 4 5

I 2 3 4 5

89. I would feel comfortable landing
visual scene from:

imaging sensors

computer-based obstacle and
airp_ databases

a combination of sensor and

computer-based infonnation

a commercial aircraft that supplied a forward

disagree agree

1 2 3 4 5

1 2 3 4 5

I 2 3 4 5

90. I could get used to landing an aircraft that supplied a forward visual scene from:

imaging sensors

computer-based obstacle and
a_pon data bases

a combination of sensor and

computer-based information

disagree agree

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
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91. A forward visual scene generated from sensor and/or computer airport and terrain
data bases, augmented by symboiogy like that found on Heads-Up Displays
(HUD's), will likely be presented on a large field-of-view display. Do yon think
such a display should:

replace the ix_ary
flight display

supplement the primary
flight display

1 2 3 4 5

92. I would be more comfortable if sensors used to detect the runway, surface objects
and aircraft in the terminal area were located:

on the ground ontheaircraft

1 2 3 4 5

93. Given that the HSCT will require continuous automated augmentation of the
pilots' primary control inputs (cables will not be directly linked to control
surfaces), would you prefer your primary control device to be a: (Check one)

center stick __ wheel and column __ side stick

94. Which of these control devices have you flown with? (Check all that apply)

centerstick__ wheelandcolumn_ sidestick
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APPENDIX B

Data Tables for

"Phenomenological Experiences" Results
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Table B1

Orderin8 of Components on Attention to Fligh.t/Automat!on Dimension (a).

Components Rated High in Atten.tion to the l_lsgnt are at me Top; Components

High m Attention to the Automation are at the Bottom.

Q Component Score

3

15 auto
tems

5 [der

16 controls

2

14

1

7

10

auto

auto

AL

4.37

4.32

4.26

4.24

4.23

4.12

4.08

.05

3.97

3.97

3.95

12 3.83

23 auto radio .72

26 3.61

21 3.60

6 ,.55

20 3.40
4 director .25

8 25

9 hz 3.20

3.01

19 2.84

11 auto 2.81
schematics

2.59

24 kRS 2.58

_t.t,_. The rating _has been reversed from the way it appeared in the questionnaire. Here 5 ffi
attention is focused on the flight; lffi attention is focused on the automation
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Table B2

Ordering of Components on Situation Awareness Question (b). Components

Rated High in Contributing to Situation Awareness are at the Top;

Components Low in Situation Awareness are at the Bottom.

Q

21

25

17

6

22

20

18

15

8

9

7

10

19

4

2

13

12

11

23

5

24

1

16

26

14

3

Component

navigation display

sub-syst schematics

FMC-flight planning
primary fit display

inertial refer system

TCAS traffic display
FMC-auto manage

_ound spoiler

autopilot-pitch roll

autopilot-vrt hz paths

autopilot-HDG SPD ALT
autothrottle

FMC LNAV VNAV

flight director

auto engine start

fly-by-wire controls

speed envelope limit

auto landing

auto radio tuning

stability aug systems
ACARS

auto braking
automatic rudder

envelope protection

flap limiting

hydr amplif of inputs

Scor_

4.30

4.27

4.05

4.04

3.94

3.92

3.90

3.88

3.85

3.85

3.84

3.84

3.80

3.76

3.72

3.72

3.69

3.63

3.60

3.57

3.55

3.54

3.54

3.44

3.42

3.40

Note. The rating scale used in the questionnaire was the following: 5 = my understanding of the

big picture is deeper I-- my understanding of the big picture is shallower
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Table B3

Ordering of Components on Obtrusiveness Question (c). Components rated
low in obtrusiveness are at the top; components high in obtrusiveness are at
the bottom.

Q Component Score

22 4.45
15

3

2
13

16

5

21

1

7

10

6
4

23
25

18

14

12

17

8

9

19

26

11

24

20

inertial refer system

_round spoiler

hydr amplif of inputs
auto engine start

fly-by-wire controls
automatic rudder

stability au_ systems

navi$ation display

auto brakin_

autopilot-HDG SPD ALT
autothrottle

primary fit display
flight director

auto radio tunin_
sub-syst schematics

FMC-auto manage

flap limitin_

speed envelope limit

FMC-flisht plannin_

autopilot-pitch roll

autopilot-wt hz paths
FMC LNAV VNAV

envelope protection

auto landin_
ACARS

TCAS traffic display

4.44

4.34

4.32
4.31

4.28

4.23

4.23

4.15

4.12

4.12
4.11

4.1

4.09

4.09

3.92
3.84

3.83

3.82

3.8

3.8

3.8

3.72

3.7
3.44

3.16

Note. The rating scale has been reversed from the way it appeared in the questionnaire. Here 5 =
unob_ive 1= distracting
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Table B4

Ordering of Components ControUing/Wlanaging Dimension (d). Components

Rated High in Controlling are at the Top; Components High in Managing are
at the Bottom.

Q Component Score

3 4.10

15

13

16

5

6

14

25

12

24

26

4

20

22

7

10

21

23

8

9

2

19

18

17

11

hydr amplif of inputs

auto _ound spoiler

fly-by-wire controls
automatic rudder

stability aug systems

primary flight displ

flap limiting

sub-syst schematics

speed envelope limit
ACARS

envelope protection

flight director

TCAS traffic display

inertial refer system

autopilot-HDG SPD AL
auto throttle

navigation display

auto braking

auto radio tuning

autopilot-pitch, roll

autopilot-vrt hz paths

auto engine start
FMC LNAV VNAV

FMC-auto manage

FMC-flight planning

auto landin 8

4.00

3.95

3.92

3.87

3.58

3.58

3.55

3.47

3.46

3.42

3.38

3.38

3.35

3.33

3.33

3.33

3.27

3.02

2.75

2.75

2.67

2.59

2.56

2.25

2.02

Note. The rating scale has been reversed from the way it appeared in the questionnaire. Here 5
= feeling of controlling the flight; I= feeling of managing the automation
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Table B$

Ordering of Components on Predictability Question (e). Components Rated
High in Predictability are at the Top; Components Low in Predictability are at
the Bottom.

Q

21

15

22

3

2

6

13
17

4
7

10

18

11

19

25
8

9

14

Component

navigation display

_round spoiler
inertial refer system

hydr amplifof inputs

auto engine start

primary fit display

fly-by-wire controls

FMC-f|ightplanning
auto braking

flight director

autopilot-HDG SPD ALT
autothrottle

FMC-automanage

auto landing
FMC LNAV VNAV

24

16 automatic rudder

5

12

23

26

20

sub-syst schematics

autopilot-pitch roll

autopilot-vrt hz paths

flap limiting
ACARS

stability aug systems
speed envelope limit

auto radio tuning

envelope protection

TCAS traffic display

Score

4.3

4.2

4.18

4.17

4.14

4.12
4.11

4.11

4.09

4.08

4.02
4.02

3.94

3.91
3.91

3.89

3.88

3.88

3.86

3.86

3.82

3.79

3.74

3.7

3.62

3.2

Note. The rating scale used in the questionnaire was the following: 5 = I can predict the behavlor

of the automation with ease lffi I can predict the behavior of the automation with difficulty
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Table B6

Ordering of Components on Workload Question (f). Components Rated Low
in Workload are at the Top; Components High in Workload are at the Bottom.

Q Component

15

10
22

2
16

21
7

3

23

25
4

5
13

8
9

1

18

17

19

6

12
14

26
11

24

_round spoiler
autothrottle

inertial refer system

auto engine start
automatic rudder

navisation display

autopilot-HDG SPD ALT
hydr amplif of inputs

auto radio tunin_

sub-syst schematics

flisht director

stability au_ systems

fly-by-wire controls

autopilot-pitch roll

autopilot-vrt hz paths

auto brakin_
FMC-auto manage

FMC-flight plannin 8
FMC LNAV VNAV

primary fit display
speed envelope limit

flap limitin8

envelope protection

auto landin_
ACARS

20 TCAS traffic display

Score

4.21

4.14

4.09

4.07

4.06

4.04

3.97

3.96
3.96

3.92

3.9

3.85

3.81

3.8
J

3.8

3.77

3.77

3.73

3.73

3.7
3.62

3.53

3.52

3.51

3.47

3.1

Note. The rating scale has been reversed from the way it appeared in the questionnaire. Here 5 =
low workload 1= high workload
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Table B7

Ordering of Components on Frequency of UseQuestion (g). Components
Rated High in Use are at the Top; Components Low in Use are at the Bottom.

Q

22

15

17

21
6

13

24

5

2O

3

25

2

4
18

23

19

26

16

12

10

8

9

7

1

14
11

Component

inertial refer system

_round spoiler

FMC-flight planning

navigation display
primary at display

fly-by-wire controls
ACARS

stability aug systems

TCAS traffic display

hydr amplif of inputs
sub-syst schematics

auto engine start

flight director

FMC-auto manage

auto radio tuning
FMC LNAV VNAV

envelope protection
automatic rudder

speed envelope limit
autothrottle

autopilot-pitch roll

autopilot-vrt hz paths

autopilot-HDG SPD ALT

auto braking

flaplimiting

auto landing

Score

4.92

4.88

4.83

4.75

4.73

4.69

4.69

4.68
4.67

4.63

4.59

4.58

4.53

4.52
4.46

4.38

4.27

4.26

4.24

4.22

4.16

4.16

4.14

4.13
3.47

2.88

Note. The rating scale used in the questionnaire was the following: 5 = In the flight phase or
mode where use of this component is appropriate, I use it always 1= ..3 use it never
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Table B8

Ordering of Alerts on Attention Getting Question (a). Alerts Rated High in

Attention GeRing are at the Top; Alerts Low in Attention Getting are at the

Bottom.

Q Alert Score

28 4.93

31

3o

27

29

GPWS warning

TCAS resolution advisory

TCAS traffic advisory

master caution and warning

configuration warning

4.93

4.86

4.83

4.82

Note. The rating scale used in the questionnaire was the following: 5 = The alert gets my

attention immediately lffi The alert gets my attention eventually

Table B9

Ordering of Alerts on Trust Question (b). Alerts Rated High in Trust are at the

Top; Alerts Low in Trust are at the Bottom.

Q Alert Score

29 4.53

31

28

27

30

configuration warning

TCAS resolution advisory

GPWS warning

master caution and warning

TCAS traffic advisory

4.37

4.26

4.1

4.09

Note. The rating scale used in the questionnaire was the following: 5 = I trust that the alert

signals a real event always 1= I trust that the alert signals a real event never

Table B10

Ordering of Alerts on Knowing What the Problem is Question (c). Alerts

Rated High in Knowing are at the Top; Alerts Low in Knowing are at the
Bottom.

Q Alert Score

31 3.93

29

3O

28

27

TCAS resolution advisory

configuration warning

TCAS traffic advisory

GPWS warning

master caution and warning

Note. The rating scale used in the questionnaire was the following: 5 =

3.76

3.65

3.59

3.31

know exactly what the

problem is immediately I= I know exactly what the problem is eventually
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Table Bll

Ordering of Alerts on Automaticity of Response Question (d). Alerts Rated

High on Automaticity of Response are at the Top; Alerts Low in Automaticity
are at the Bottom.

Q Alert Score

3.9628

31

29

3o

27

GPWS warning

TCAS resolution advisory

confi_uration warning

TCAS traffic advisory

master caution and warning

3.91

3.56

3.32

2.86

Note. The rating scale used in the questionnaire was the following: 5 = My response to the alert
is automatic I = My response to the alert requires thought

Table B12

Ordering of Alerts on Ease of Returning to Interrupted Tasks Question (e).

Alerts Rated High on Ease of Returning are at the Top; Alerts Low in Ease of

Returning are at the Bottom.

Q Alert Score

3.643O

29

27

31

28

TCAS traffic advisory

confi_aration warning

master caution and warning;

TCAS resolution advisory

GPWS warnin 8

3.63

3.42

3.40

3.39

Note. The rating scale used in the questionnaire was the following: 5 = Returning to interrupted
tasks after the alert is easy 1 = Returning to interrupted tasks after the alert is difficult

Table B13

Ordering of Alerts on Frequency of Alerts Question (f). Alerts Rated High in

Frequency are at the Top; Alerts Low in Frequency are at the Bottom.

Q Alert Score

30 2.94

27

31

28

29

TCAS traffic advisory

master caution and warning

TCAS resolution advisory

GPWS warning

configuration warnin8

2.7

2.11

2

2

Note. The rating scale used in the questionnaire was the following: 5 = On my current aircraft
these alerts occur very often 1= On my current aircraft, these alerts occur never
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APPENDIX C

Discussion and Figures for Miscellaneous Results
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The results of the question concerning how autoflight modes should be
annunciated (Q42) supported the hypothesis that it is more intuitive for pilots to

organize the modes by what is being controlled, that is, speed, vertical path and
lateral path, than by what is controlling (see Figure C1). However, pilots

generally felt that it is easy to predict automatic transitions between different
autoflight modes on their current aircraft (Q43), contradicting the hypothesis that

this is somewhat confusing on current aircraft (see Figure C2).

Pilots felt strongly that synthetic speech should only be used for time-critical

warnings (Q44), despite its potential to reduce visual workload (see Figure C3).
One argument for the pilot's view is that the more synthetic speech is used on the

flight deck, the less effective it will be in conveying response urgency, which is

its primary purpose on current aircraft.

Pilots felt that the amount of information on their aircraft was reasonable (Q45),

as indicated by the large number of neutral responses (see Figure C4). The mean

response was 3.2, indicating a slight opinion that there is too much information
on current aircraft, but the result does not provide strong evidence that there is

an "information overload" problem on today's flight decks.

The responses to the questions addressing the presentation of probabilistic
information by decision aids (Q49 & 50) indicated that pilots agree slightly with

the position that information should not be provided unless it is certain (100%
accurate), although it is clear from Figure C5 that pilots opinions are widely
distributed on this issue. When asked what probability of being correct would be

required before they would accept information from a decision aid, the mean

response was 78%, and as can be seen from Figure C6, the preferred range was

90-99%.

Responses to questions about the high speed civil transport revealed several
interesting findings. Questions 88-90 addressed the issue of synthetic vision.
These questions were designed to assess the effects of two variables: question
wording and type of synthetic data--imaging sensors, computer database, or a
combination. The wording of the three questions varied in obliqueness. In

question 88 subjects were asked to assess how other pilots would feel about
having to fly without a forward window. In question 89 they were asked how

they would feel, and in question 90, how they would feel after a period of
familiarization. The responses were analyzed with an analysis of variance for

two within-subject variables. The results showed a significant main effect both of

question obliqueness, F(2,210)=87.12, p<.0001, and of type of data base,
F(2,210)=59.57, p<.0001. The average responses are shown in Figure C7. It is

clear from the figure that subjects trusted a synthetic vision system based on a
combination of data sources more than one based on a single source. Preferences
for each of the single sources were statistically equivalent (p>.05) on a Tukey
test. Interestingly, pilots expressed more reservations about relying on synthetic
vision when they were asked the question indirectly. Tukey analysis showed an
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increased endorsement with each wording change, as the wording became more

personal and more insistent. The responses changed from the negative end of

the scale for other pilots (2.69) to fairly positive for self with familiarization (3.63)

for the combined data sources. These results suggest that oblique questioning

may be a good way to elidt reservations that pilots might otherwise feel

uncomfortable about expressing.

When asked whether they would like a synthetic vision display which provides a

forward visual scene to replace or supplement the conventional primary flight

display ((291), the overwhelming response was that they would like it to

supplement the primary flight display (mean response = 3.82, where I was

labeled "replace the primary flight display" and 5 was labeled "supplement the

primary flight display." Over two-thirds of the pilots responded with a "4" or "5"

(see Figure C8). Pilots also preferred that the sensors used to detect the runway,

objects, aircraft, etc., for the synthetic vision display be located on the aircraft

rather than on the ground (Q92, Figure C9).

Finally, in response to the type of control device they would prefer for an HSCT

aircraft (Q93), 78 pilots preferred a side stick, 40 preferred a wheel and column,

and 8 preferred a center stick (see Figure C10). This result is especially

interesting given that 98% of the subjects have flown with a wheel and column,

80% with a center stick, and only 42% with a side stick (Q94). It is not surprising

that the A-320 pilots chose the side stick since they fly with one, but the B747-400

pilots preferred it as well (27 preferred the side stick to 15 for the wheel and

column). The MD-11 pilots were the only ones that preferred a wheel and

column (23 respondents) to a side-stick (10 respondents); this result may have

been due to the fact that the MD-11 pilots were older and more resistant to

change.
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Figure CI. Autoflight mode annunciation should be organized and displayed by:

what is controlling

(autothrotlle, roll, pitch)

what is being controlled

(speed, lateral loath, vcrt. path)
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Fi_,ure C2. On my current aircraft, automatictransitions between different autoflight

modes are usually:

hard to predict easy to predict
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Figure C3. I think synthetic speech for providing information to the pilot should be:

used only for time-critical

warnings (e.g.. "pull-up,"

"windshear")

used to convey a variety

of messages (e.g., ATC

datalink, FMC, ACARS, etc.)
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Figure C4. I think the overall amount of information available on my aircraft is:

not enough too much
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Figure C5. A decision aid should only provide information to the pilot if it is certain
that it is 100% correct.:
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Q5O

10- 20- 30- 40- 50- 60- 70- 80- 90- 100
19 29 39 49 59 69 79 89 99

Figure C6. If a decision aid tells me the probability of the choice being correct, I will

accept information that has as low as a % probability of being correct.
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_. A forward visual scene generated from sensor and/or computer airport and

terrain data bases, augmented by symbology like that found on Heads-up
displays (HUD's), will likely be presented on a large field-of-view display.
Do you think such a display should:

replace the primary

flight display supplement theprimary

flight display
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I would be more comfortable if sensors used to detect the runway, surface

objects and aircraft in the terminal area were located:
on the aircraft

on the ground
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_. Given that the HSCT will require continuous automated augmentation
of the pilots' primary control inputs (cables will not be directly
linked to control surfaces), would you prefer your primary control

device to be a:
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